
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Logistics

• All 4 Guest Lectures complete
• Eugune Wu: classic DB + HCI researcher

• Shreya Shankar: Modern DB + HCI researcher

• Andrey Cheng:

• DB researcher, but now working on LLM for optimizing DB

• Junchen Jiang: networking, but want to propose a new type of

DB

• Fall 2025 Student Evaluations of Teaching were sent
• Again: if 80% of you finish the evaluation, all will get 2 bonus

points.

Logistics

We might need 1 – 2 extra lectures (beyond scheduled) to
compensate holiday interruptions

• Will decide depending on our progress

• If happen – will on Zoom

Exam:

• all MCQ, TA will hold a recitation before exam

• Date and time: Dec 10, 11:30AM to 2:30PM

• Location: WLH2111

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

5

Symbolic vs. Imperative (2016)

Imperative Symbolic

6

Symbolic vs. Imperative (2024)

Imperative Symbolic

7

Symbolic vs. Imperative (2024)

Imperative Symbolic

Just-in-time (JIT) Compilation

• Ideally, we want define-and-run during ______

• We want define-then-run during _____

• Q: how can combine the best of both worlds?

@torch.compile()

Devmode Deploymode:
Decorate torch.compile()

What happens behind the scene

@torch.compile()

What is the problem of JIT?

Requirements for static graphs

Q: What is the problem of JIT?

A: Requirements for static graphs

LSTM LSTM

LSTMLSTM

LSTMLSTM

LSTM

Static Models vs. Dynamic Models

11

conv2d pool conv2dx y
x
x

y
y

S

VP

VD N

NP

NP

D N

The girl picked

the coin

S

John

N VP

V NP

D N

hit the ball John hit the ball

LSTM

LSTM LSTM

LSTM

LSTM LSTM

LSTM

LSTM LSTM

The girl picked the coin

Dataflow graph

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

What happens behind the Scene (Cond.)

Expand it a Bit

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives

Recap: how to take derivative?

Given 𝑓 𝜃 , what is
𝜕𝑓

𝜕𝜃
？

Instead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

𝜕(𝑓 𝜃 +𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃)

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

Map autodiff rules to computational graph

• Q: Calculate the value of
𝜕𝑦

𝜕𝑥1

• A: use PD and chain rules

Reverse Mode AD

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

• We then compute each ҧ𝑣𝑖 in the

reverse topological order of the graph

• Finally:
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5

Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where

Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input node

Back to Our Question

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives

Back to our question: Construct the Backward Graph

• How can we construct a computational graph that calculates the adjoint value?

f: (exp 𝑣1 +1)exp(𝑣1)

How to implement reverse Autodiff (aka. BP)

Record all partial adjoints of a
node

Sum up all partial adjoints to
get the gradient

Compute and propagates
partial adjoints to its inputs.

Start from 𝑣4 i = 4: 𝑣4 = 𝑠𝑢𝑚 1 = 1

𝑣4: Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4)

i=4: ഥ𝑣4 = 𝑠𝑢𝑚 1 = 1

k=2: 𝑣2→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣2
= ഥ𝑣4𝑣3

k=3: 𝑣3→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣3
= ഥ𝑣4𝑣2, 𝑣3→4 = ഥ𝑣3

Inspect 𝑣3

i=3: ഥ𝑣3 done!

k=2: 𝑣2→3 = ഥ𝑣3
𝜕𝑣3

𝜕𝑣2
= ഥ𝑣3

Inspect 𝑣2

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

Inspect (𝑣1, 𝑣2)

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

k=1: 𝑣1→2 = ഥ𝑣2
𝜕𝑣2

𝜕𝑣1
= ഥ𝑣2exp(v1),

ഥ𝑣1 = 𝑣1→2

Summary: Backward AD

• Construct backward graph in a symbolic way (instead of concrete

values)

• This graph can be reused by different input values

• Used by TensorFlow, PyTorch

Backpropagation vs. Reverse-mode AD

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch

VS.

Incomplete yet?

• What is the missing from the following graph for ML training?

Forward Backward Weight update

Recall Our Master Equation

35

Put in Practice

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑

Today

• Autodiff

• Architecture Overview

38

MLSys’ Grand problem

• Our system goals:

• Fast

• Scale

• Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy

ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Goal:

• Rewrite the original Graph G to G’

•G’ runs faster than G

Motivating Example: Attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Why merged QKV is faster?

Arithmetic Intensity

AI = #ops / #bytes

How to perform graph optimization?

• Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Parallelization

• Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph
on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’

Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallelize?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Runtime and Scheduling

• Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

• Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Operator Implementation

• Goal: get the fastest possible implementation of

• Matmul

• Conv2d?

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Logistics
	Slide 3: Logistics
	Slide 4: High-level Picture
	Slide 5: Symbolic vs. Imperative (2016)
	Slide 6: Symbolic vs. Imperative (2024)
	Slide 7: Symbolic vs. Imperative (2024)
	Slide 8: Just-in-time (JIT) Compilation
	Slide 9: What happens behind the scene
	Slide 10
	Slide 11: Static Models vs. Dynamic Models
	Slide 12: High-level Picture
	Slide 13: What happens behind the Scene (Cond.)
	Slide 14: Expand it a Bit
	Slide 15: Recap: how to take derivative?
	Slide 16: Instead, Symbolic Differentiation
	Slide 17: Map autodiff rules to computational graph
	Slide 20: Reverse Mode AD
	Slide 21: Case Study
	Slide 22: Summary: Backward Mode Autodiff
	Slide 23: Back to Our Question
	Slide 24: Back to our question: Construct the Backward Graph
	Slide 25: How to implement reverse Autodiff (aka. BP)
	Slide 26: Start from v sub 4
	Slide 27: v sub 4: Inspect (v sub 2,, v sub 4) and (v sub 3,, v sub 4)
	Slide 28: Inspect v sub 3
	Slide 29: Inspect v sub 2
	Slide 30: Inspect (v sub 1,, v sub 2)
	Slide 31: Summary: Backward AD
	Slide 32: Backpropagation vs. Reverse-mode AD
	Slide 33: Incomplete yet?
	Slide 34: Recall Our Master Equation
	Slide 35: Put in Practice
	Slide 36: Homework: How to derive gradients for
	Slide 37: Today
	Slide 38: MLSys’ Grand problem
	Slide 39: ML System Overview
	Slide 40: Graph Optimization
	Slide 41: Motivating Example: Attention
	Slide 42: Arithmetic Intensity
	Slide 43: How to perform graph optimization?
	Slide 44: Parallelization
	Slide 45: Parallelization Problems
	Slide 46: Runtime and Scheduling
	Slide 47: Operator Implementation
	Slide 48: High-level Picture

