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Staff
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@haozhangml
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Logistics

• All 4 Guest Lectures complete
• Eugune Wu: classic DB + HCI researcher

• Shreya Shankar: Modern DB + HCI researcher

• Andrey Cheng:

• DB researcher, but now working on LLM for optimizing DB

• Junchen Jiang: networking, but want to propose a new type of

DB

• Fall 2025 Student Evaluations of Teaching were sent
• Again: if 80% of you finish the evaluation, all will get 2 bonus

points.



Logistics

We might need 1 – 2 extra lectures (beyond scheduled) to
compensate holiday interruptions

• Will decide depending on our progress

• If happen – will on Zoom

Exam:

• all MCQ, TA will hold a recitation before exam

• Date and time: Dec 10, 11:30AM to 2:30PM

• Location: WLH2111



High-level Picture
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Symbolic vs. Imperative (2016)

Imperative Symbolic
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Symbolic vs. Imperative (2024)

Imperative Symbolic
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Symbolic vs. Imperative (2024)

Imperative Symbolic



Just-in-time (JIT) Compilation

• Ideally, we want define-and-run during ______

• We want define-then-run during _____

• Q: how can combine the best of both worlds?

@torch.compile()

Devmode Deploymode:
Decorate torch.compile()



What happens behind the scene

@torch.compile()

What is the problem of JIT?

Requirements for static graphs



Q: What is the problem of JIT?

A: Requirements for static graphs
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Static Models vs. Dynamic Models
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What happens behind the Scene (Cond.)



Expand it a Bit

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives



Recap: how to take derivative?

Given 𝑓 𝜃 , what is 
𝜕𝑓

𝜕𝜃
？



Instead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

𝜕(𝑓 𝜃 +𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃 )

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃



Map autodiff rules to computational graph

• Q: Calculate the value of 
𝜕𝑦

𝜕𝑥1

• A: use PD and chain rules



Reverse Mode AD

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

• We then compute each ҧ𝑣𝑖 in the 

reverse topological order of the graph

• Finally: 
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5



Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where 



Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input node



Back to Our Question

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives
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backward computation using

primitives



Back to our question: Construct the Backward Graph

• How can we construct a computational graph that calculates the adjoint value? 

f: (exp 𝑣1 +1)exp(𝑣1)



How to implement reverse Autodiff (aka. BP)

Record all partial adjoints of a
node

Sum up all partial adjoints to
get the gradient

Compute and propagates
partial adjoints to its inputs.



Start from 𝑣4 i = 4: 𝑣4 = 𝑠𝑢𝑚 1 = 1



𝑣4: Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4) 

i=4: ഥ𝑣4 = 𝑠𝑢𝑚 1 = 1

k=2: 𝑣2→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣2
= ഥ𝑣4𝑣3

k=3: 𝑣3→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣3
= ഥ𝑣4𝑣2, 𝑣3→4 = ഥ𝑣3



Inspect 𝑣3

i=3: ഥ𝑣3 done!

k=2: 𝑣2→3 = ഥ𝑣3
𝜕𝑣3

𝜕𝑣2
= ഥ𝑣3



Inspect 𝑣2

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4



Inspect (𝑣1, 𝑣2) 

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

k=1: 𝑣1→2 = ഥ𝑣2
𝜕𝑣2

𝜕𝑣1
= ഥ𝑣2exp(v1),

ഥ𝑣1 = 𝑣1→2



Summary: Backward AD

• Construct backward graph in a symbolic way (instead of concrete

values)

• This graph can be reused by different input values

• Used by TensorFlow, PyTorch



Backpropagation vs. Reverse-mode AD

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch

VS.



Incomplete yet? 

• What is the missing from the following graph for ML training?



Forward Backward Weight update

Recall Our Master Equation
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Put in Practice

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub



Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑



Today

• Autodiff

• Architecture Overview
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MLSys’ Grand problem

• Our system goals:

• Fast

• Scale

• Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy



ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory



Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Goal:

• Rewrite the original Graph G to G’

•G’ runs faster than G



Motivating Example: Attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Why merged QKV is faster?



Arithmetic Intensity

AI = #ops / #bytes



How to perform graph optimization?

• Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Parallelization

• Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph 
on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’



Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallelize?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Runtime and Scheduling

• Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

• Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Operator Implementation

• Goal: get the fastest possible implementation of

• Matmul

• Conv2d?

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory
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