

<https://hao-ai-lab.github.io/dsc204a-f25/>

DSC 204A: Scalable Data Systems

Fall 2025

Staff

Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

 [@haozhangml](https://twitter.com/haozhangml)

 [@haoailab](https://twitter.com/haoailab)

 haozhang@ucsd.edu

Logistics

- All 4 Guest Lectures complete
 - Eugune Wu: classic DB + HCI researcher
 - Shreya Shankar: Modern DB + HCI researcher
- Andrey Cheng:
 - DB researcher, but now working on LLM for optimizing DB
- Junchen Jiang: networking, but want to propose a new type of DB
- **Fall 2025 Student Evaluations of Teaching were sent**
 - **Again: if 80% of you finish the evaluation, all will get 2 bonus points.**

Logistics

We might need 1 – 2 extra lectures (beyond scheduled) to compensate holiday interruptions

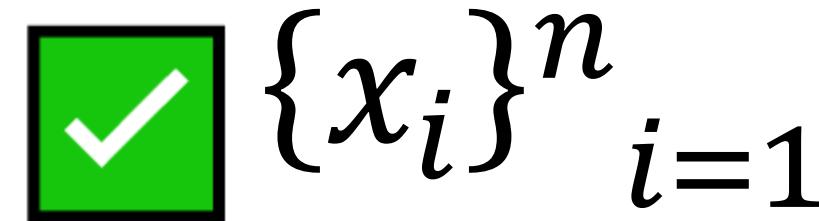
- Will decide depending on our progress
- If happen – will on Zoom

Exam:

- all MCQ, TA will hold a recitation before exam
- Date and time: Dec 10, 11:30AM to 2:30PM
- Location: WLH2111

High-level Picture

Data



Model

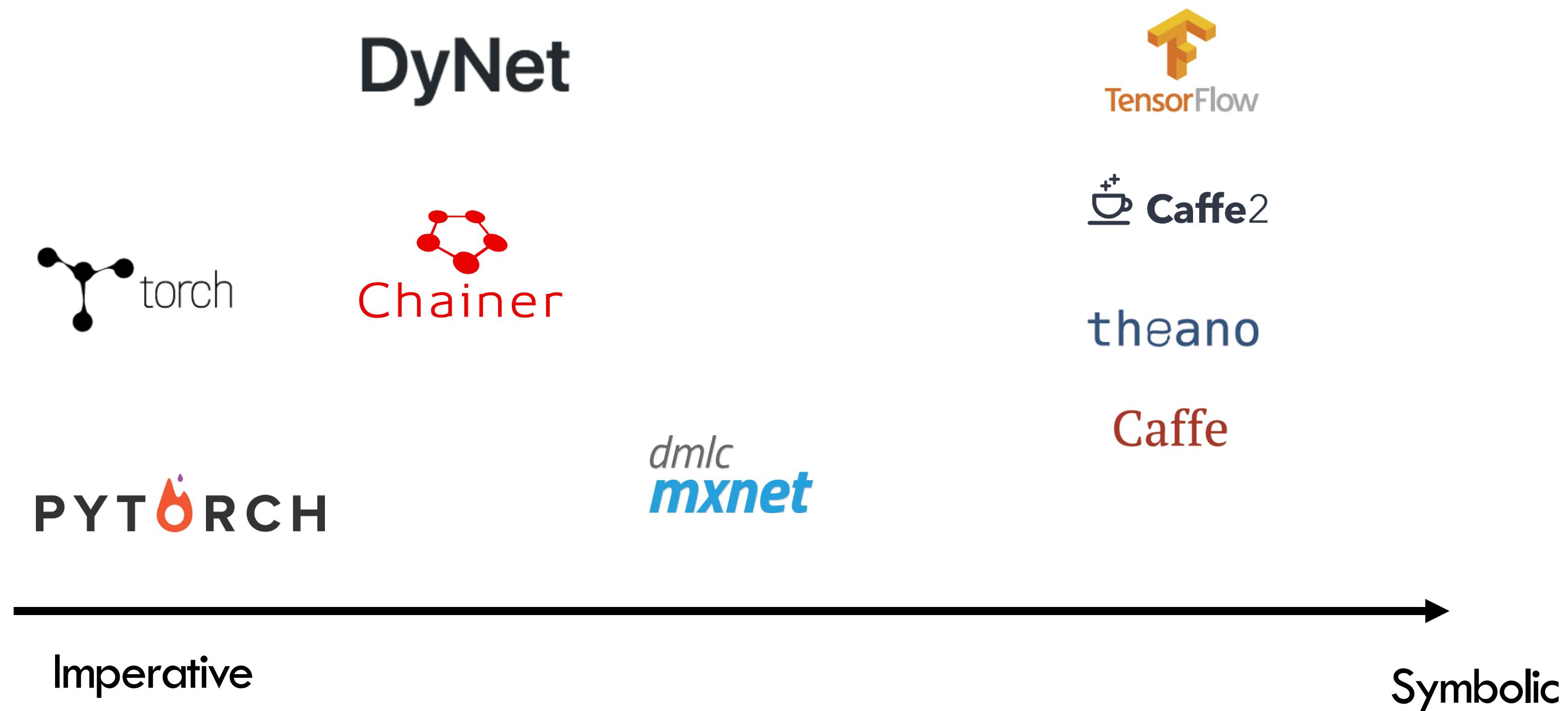
Math primitives
(mostly matmul)

? A repr that expresses the computation using primitives

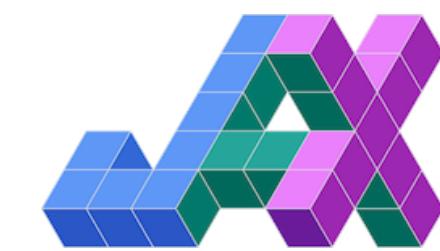
Compute

? Make them run on (clusters of) different kinds of hardware

Symbolic vs. Imperative (2016)



Symbolic vs. Imperative (2024)

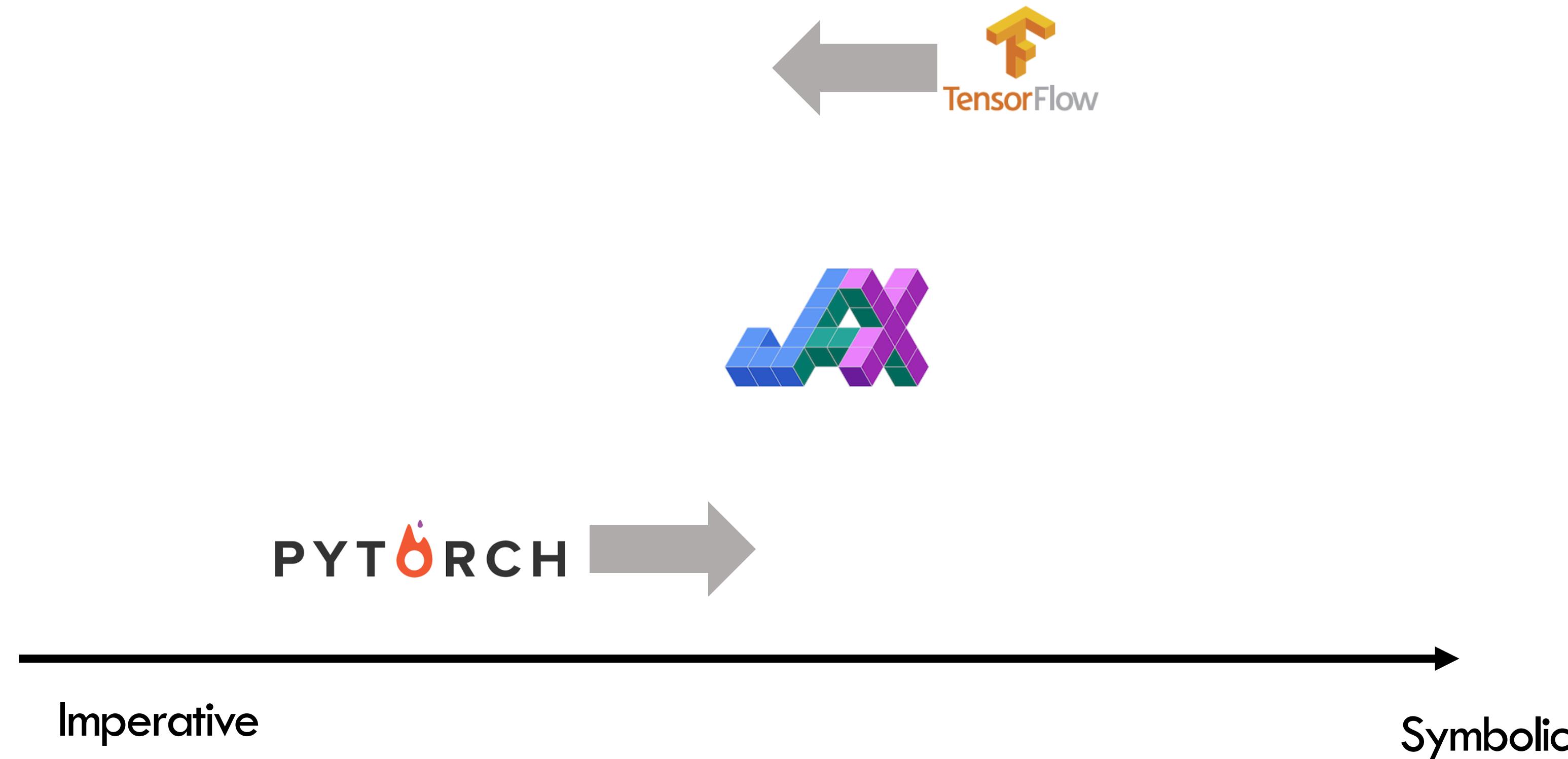


PYTORCH

Imperative

Symbolic

Symbolic vs. Imperative (2024)



Just-in-time (JIT) Compilation

- Ideally, we want define-and-run during _____
- We want define-then-run during _____
- Q: how can combine the best of both worlds?

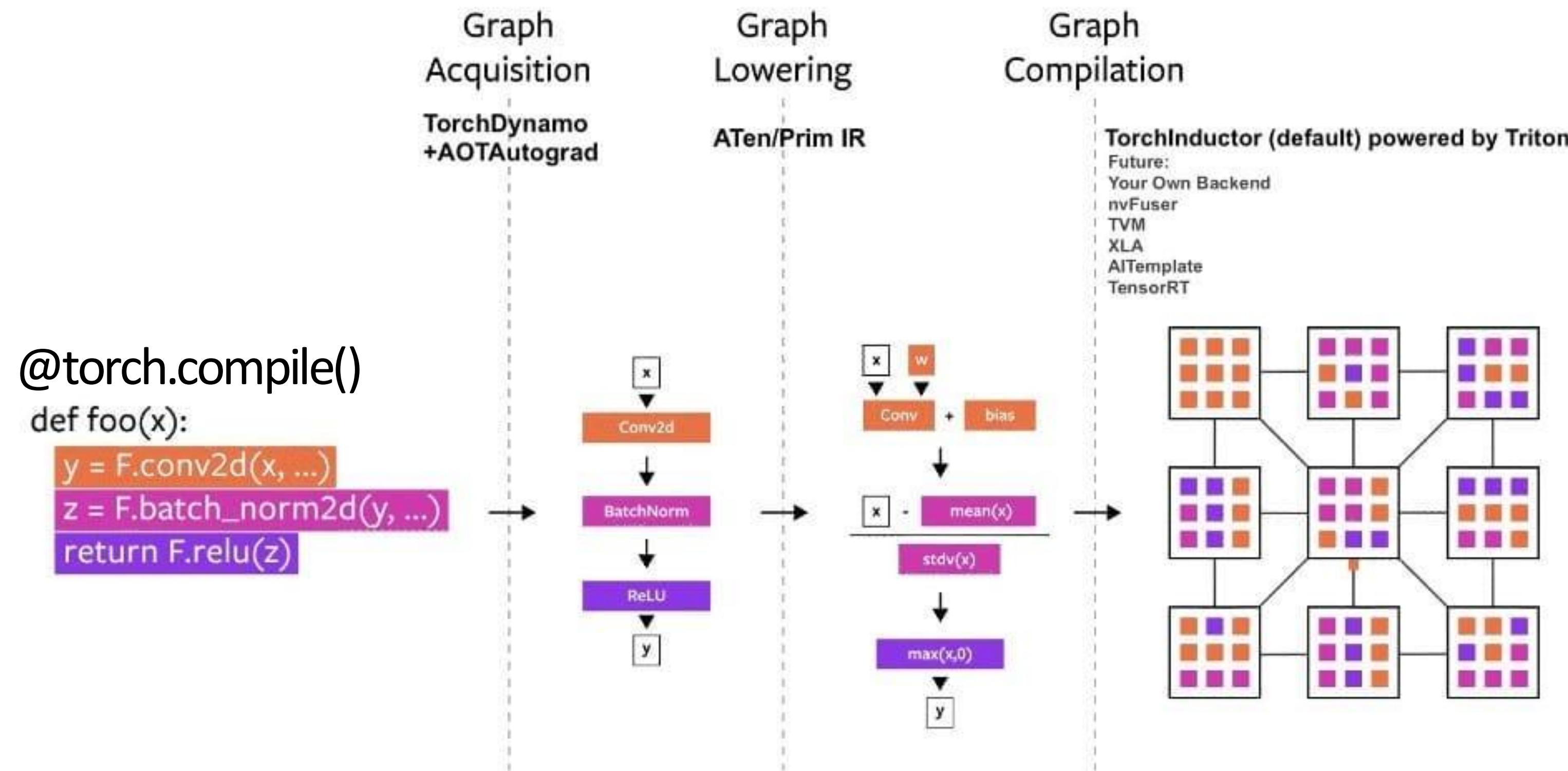
```
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
loss = square(z)
loss.backward()
print(x.grad)
```

Dev mode

```
@torch.compile()
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
loss = square(z)
loss.backward()
print(x.grad)
```

Deploy mode:
Decorate `torch.compile()`

What happens behind the scene



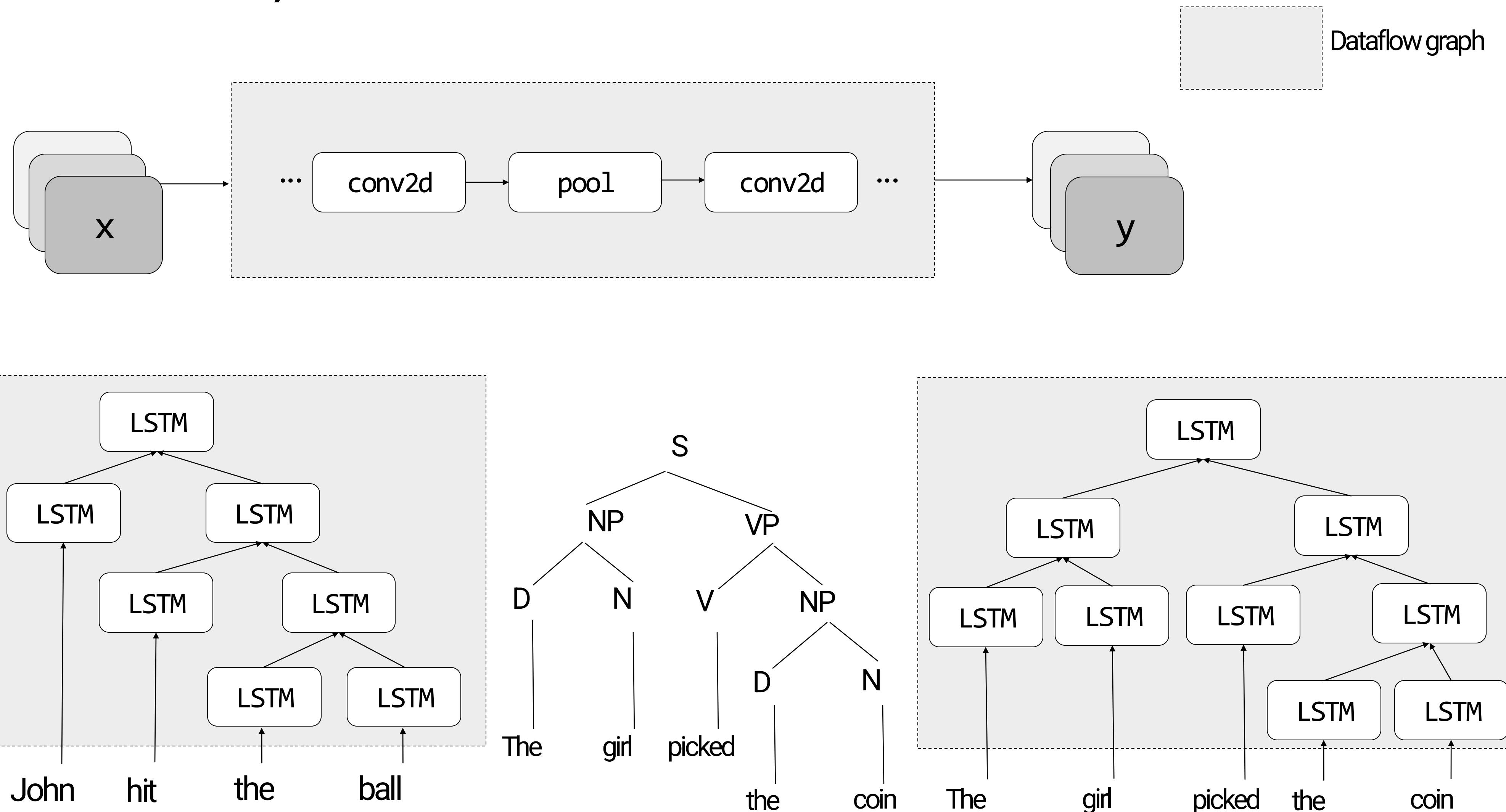
What is the problem of JIT?

Requirements for static graphs

Q: What is the problem of JIT?

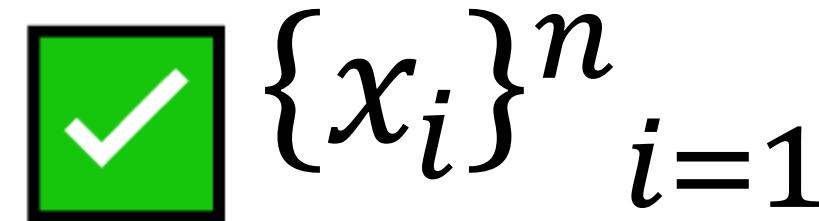
A: Requirements for static graphs

Static Models vs. Dynamic Models



High-level Picture

Data



Model

Math primitives
(mostly matmul)

? A repr that expresses the computation using primitives

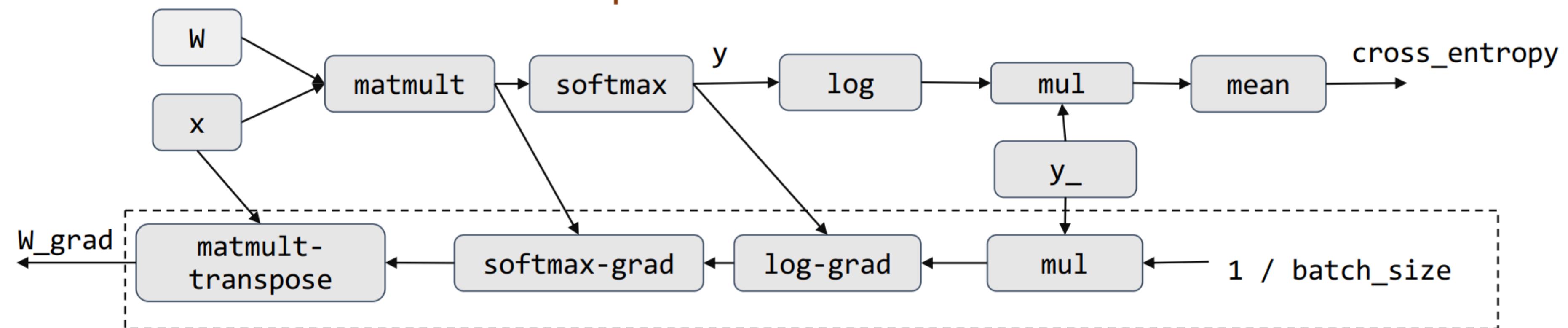
Compute

? Make them run on (clusters of) different kinds of hardware

What happens behind the Scene (Cond.)

```
w_grad = tf.gradients(cross_entropy, [W])[0]
```

Automatic Differentiation, more details in follow up lectures



Expand it a Bit

A repr that expresses the computation using primitives

 A repr that expresses the **forward** computation using primitives

 A repr that expresses the **backward** computation using primitives

Recap: how to take derivative?

Given $f(\theta)$, what is $\frac{\partial f}{\partial \theta}$?

Instead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

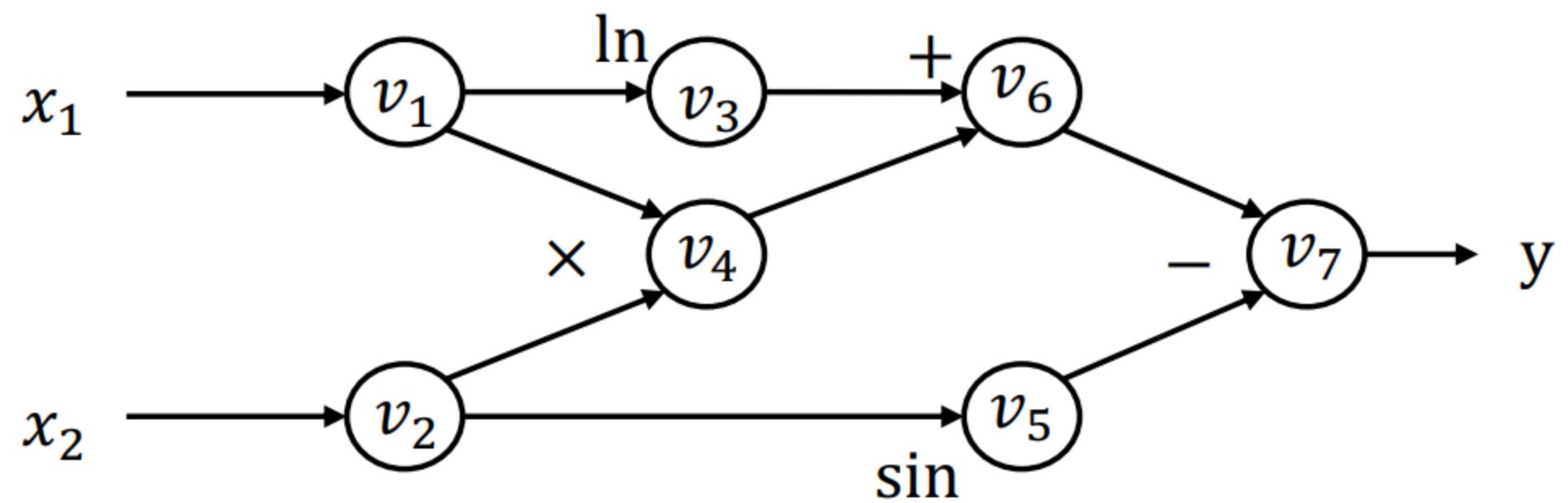
$$\frac{\partial(f(\theta) + g(\theta))}{\partial\theta} = \frac{\partial f(\theta)}{\partial\theta} + \frac{\partial g(\theta)}{\partial\theta}$$

$$\frac{\partial(f(\theta)g(\theta))}{\partial\theta} = g(\theta) \frac{\partial f(\theta)}{\partial\theta} + f(\theta) \frac{\partial g(\theta)}{\partial\theta}$$

$$\frac{\partial(f(g(\theta)))}{\partial\theta} = \frac{\partial f(g(\theta))}{\partial g(\theta)} \frac{\partial g(\theta)}{\partial\theta}$$

Map autodiff rules to computational graph

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin x_2$$



Forward evaluation trace

$$v_1 = x_1 = 2$$

$$v_2 = x_2 = 5$$

$$v_3 = \ln v_1 = \ln 2 = 0.693$$

$$v_4 = v_1 \times v_2 = 10$$

$$v_5 = \sin v_2 = \sin 5 = -0.959$$

$$v_6 = v_3 + v_4 = 10.693$$

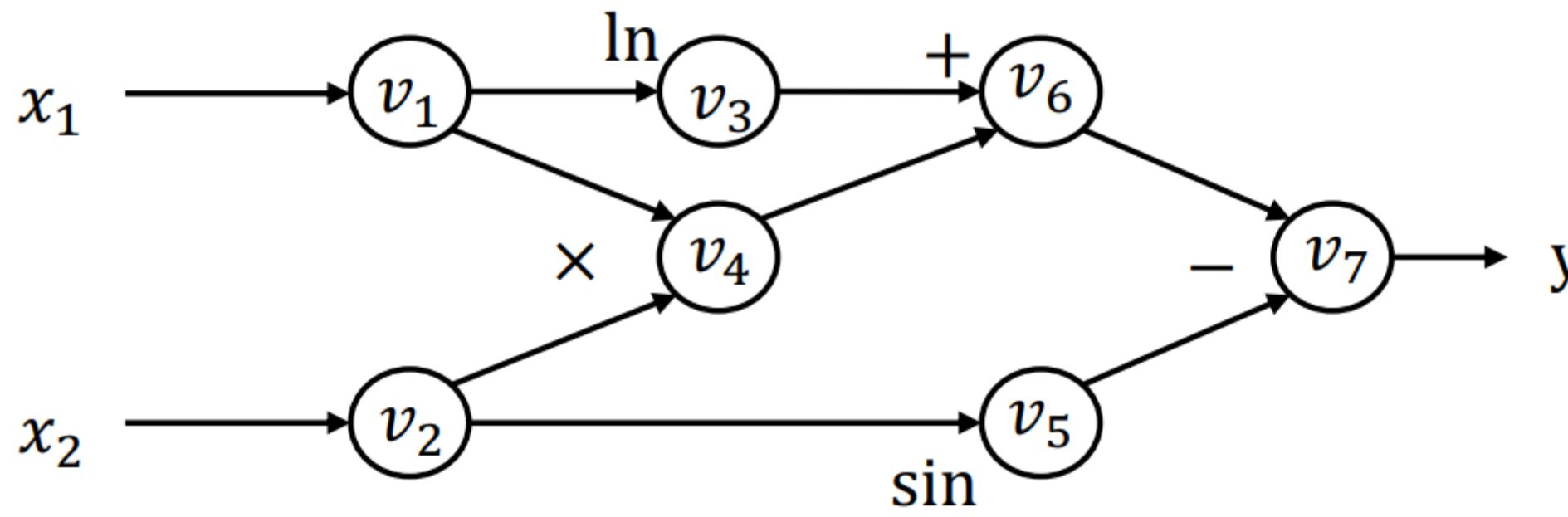
$$v_7 = v_6 - v_5 = 10.693 + 0.959 = 11.652$$

$$y = v_7 = 11.652$$

- Q: Calculate the value of $\frac{\partial y}{\partial x_1}$
- A: use PD and chain rules

Reverse Mode AD

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin x_2$$



Forward evaluation trace

$$v_1 = x_1 = 2$$

$$v_2 = x_2 = 5$$

$$v_3 = \ln v_1 = \ln 2 = 0.693$$

$$v_4 = v_1 \times v_2 = 10$$

$$v_5 = \sin v_2 = \sin 5 = -0.959$$

$$v_6 = v_3 + v_4 = 10.693$$

$$v_7 = v_6 - v_5 = 10.693 + 0.959 = 11.652$$

$$y = v_7 = 11.652$$

- Define adjoint $\bar{v}_i = \frac{\partial y}{\partial v_i}$
- We then compute each \bar{v}_i in the reverse topological order of the graph

$$\bar{v}_7 = \frac{\partial y}{\partial v_7} = 1$$

$$\bar{v}_6 = \bar{v}_7 \frac{\partial v_7}{\partial v_6} = \bar{v}_7 \times 1 = 1$$

$$\bar{v}_5 = \bar{v}_7 \frac{\partial v_7}{\partial v_5} = \bar{v}_7 \times (-1) = -1$$

$$\bar{v}_4 = \bar{v}_6 \frac{\partial v_6}{\partial v_4} = \bar{v}_6 \times 1 = 1$$

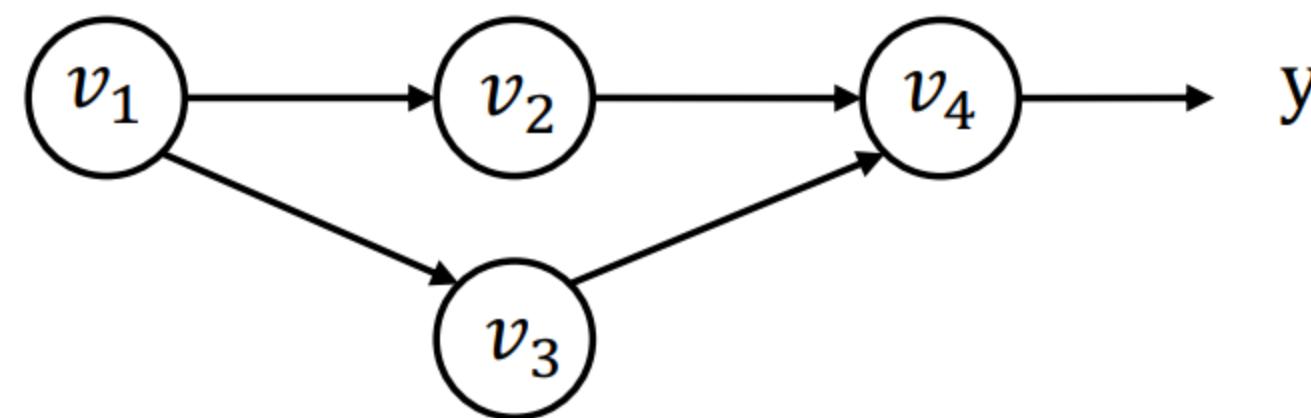
$$\bar{v}_3 = \bar{v}_6 \frac{\partial v_6}{\partial v_3} = \bar{v}_6 \times 1 = 1$$

$$\bar{v}_2 = \bar{v}_5 \frac{\partial v_5}{\partial v_2} + \bar{v}_4 \frac{\partial v_4}{\partial v_2} = \bar{v}_5 \times \cos v_2 + \bar{v}_4 \times v_1 = -0.284 + 2 = 1.716$$

$$\bar{v}_1 = \bar{v}_4 \frac{\partial v_4}{\partial v_1} + \bar{v}_3 \frac{\partial v_3}{\partial v_1} = \bar{v}_4 \times v_2 + \bar{v}_3 \frac{1}{v_1} = 5 + \frac{1}{2} = 5.5$$

- Finally: $\frac{\partial y}{\partial x_1} = \bar{v}_1 = 5.5$

Case Study



How to derive the gradient of v_1

$$\bar{v}_1 = \frac{\partial y}{\partial v_1} = \frac{\partial f(v_2, v_3)}{\partial v_2} \frac{\partial v_2}{\partial v_1} + \frac{\partial f(v_2, v_3)}{\partial v_3} \frac{\partial v_3}{\partial v_1} \quad \frac{\partial v_3}{\partial v_1} = \bar{v}_2 \frac{\partial v_2}{\partial v_1} + \bar{v}_3 \frac{\partial v_3}{\partial v_1}$$

For a v_i used by multiple consumers:

$$\bar{v}_i = \sum_{j \in \text{next}(i)} \bar{v}_{i \rightarrow j} \quad , \text{ where } \bar{v}_{i \rightarrow j} = \bar{v}_j \frac{\partial v_j}{\partial v_i}$$

Summary: Backward Mode Autodiff

- Start from the output nodes
- Derive gradient all the way back to the input node

Back to Our Question

A repr that expresses the computation using primitives

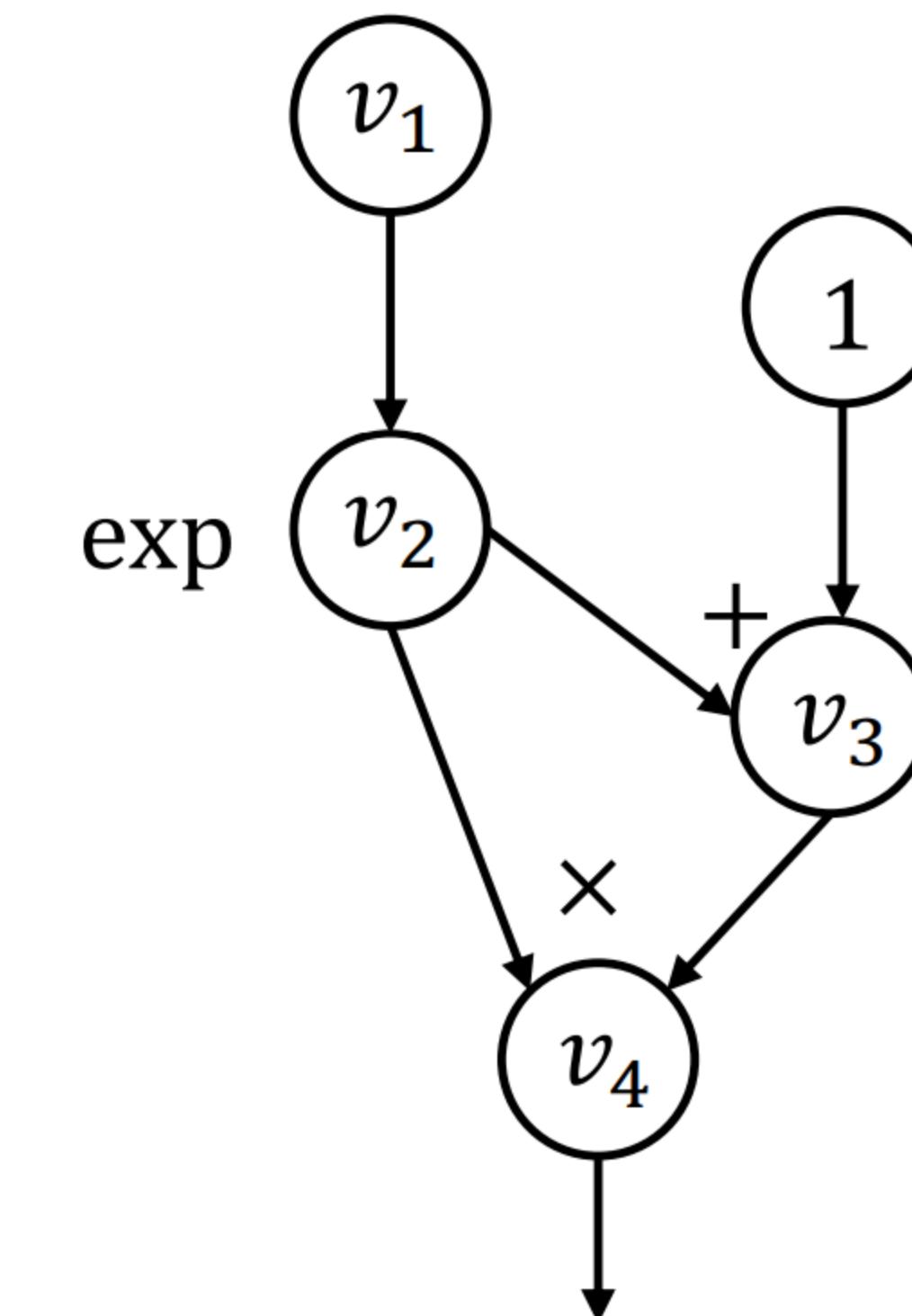
 A repr that expresses the **forward** computation using primitives

 A repr that expresses the **backward** computation using primitives

Back to our question: Construct the Backward Graph

- How can we construct a computational graph that calculates the adjoint value?

```
def gradient(out):  
    node_to_grad = {out: [1]}  
    for i in reverse_topo_order(out):  
         $\bar{v}_i = \sum_j \bar{v}_{i \rightarrow j} = \text{sum}(\text{node\_to\_grad}[i])$   
        for k in inputs(i):  
            compute  $\bar{v}_{k \rightarrow i} = \bar{v}_i \frac{\partial v_i}{\partial v_k}$   
            append  $\bar{v}_{k \rightarrow i}$  to node_to_grad[k]  
    return adjoint of input  $\bar{v}_{input}$ 
```



$$f: (\exp(v_1) + 1)\exp(v_1)$$

How to implement reverse Autodiff (aka. BP)

```
def gradient(out):  
    node_to_grad = {out: [1]}  
    for i in reverse_topo_order(out):  
         $\bar{v}_i = \sum_j \bar{v}_{i \rightarrow j} = \text{sum}(\text{node\_to\_grad}[i])$  —————>  
        for  $k \in \text{inputs}(i)$ :  
            compute  $\bar{v}_{k \rightarrow i} = \bar{v}_i \frac{\partial v_i}{\partial v_k}$   
            append  $\bar{v}_{k \rightarrow i}$  to  $\text{node\_to\_grad}[k]$  —————>  
    return adjoint of input  $\bar{v}_{\text{input}}$ 
```

Record all partial adjoints of a node

Sum up all partial adjoints to get the gradient

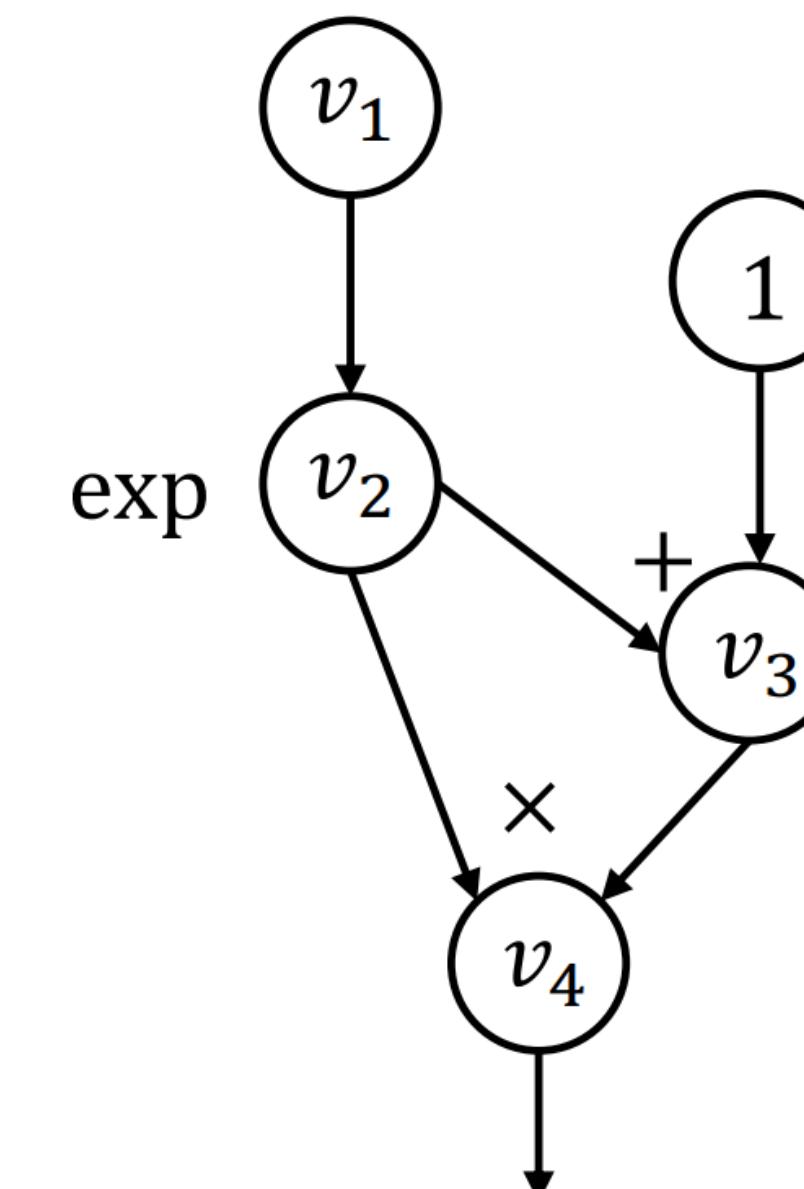
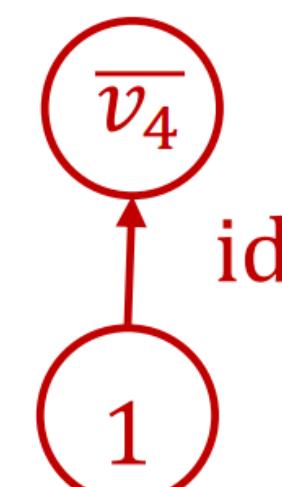
Compute and propagates partial adjoints to its inputs.

Start from v_4

$i = 4: v_4 = \text{sum}([1]) = 1$

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
         $\bar{v}_i = \sum_j \bar{v}_{i \rightarrow j} = \text{sum}(\text{node\_to\_grad}[i])$ 
        for k in inputs(i):
            compute  $\bar{v}_{k \rightarrow i} = \bar{v}_i \frac{\partial v_i}{\partial v_k}$ 
            append  $\bar{v}_{k \rightarrow i}$  to node_to_grad[k]
    return adjoint of input  $\bar{v}_{\text{input}}$ 
```

$i = 4$
node_to_grad: {
 4: $[\bar{v}_4]$
}



v_4 : Inspect (v_2, v_4) and (v_3, v_4)

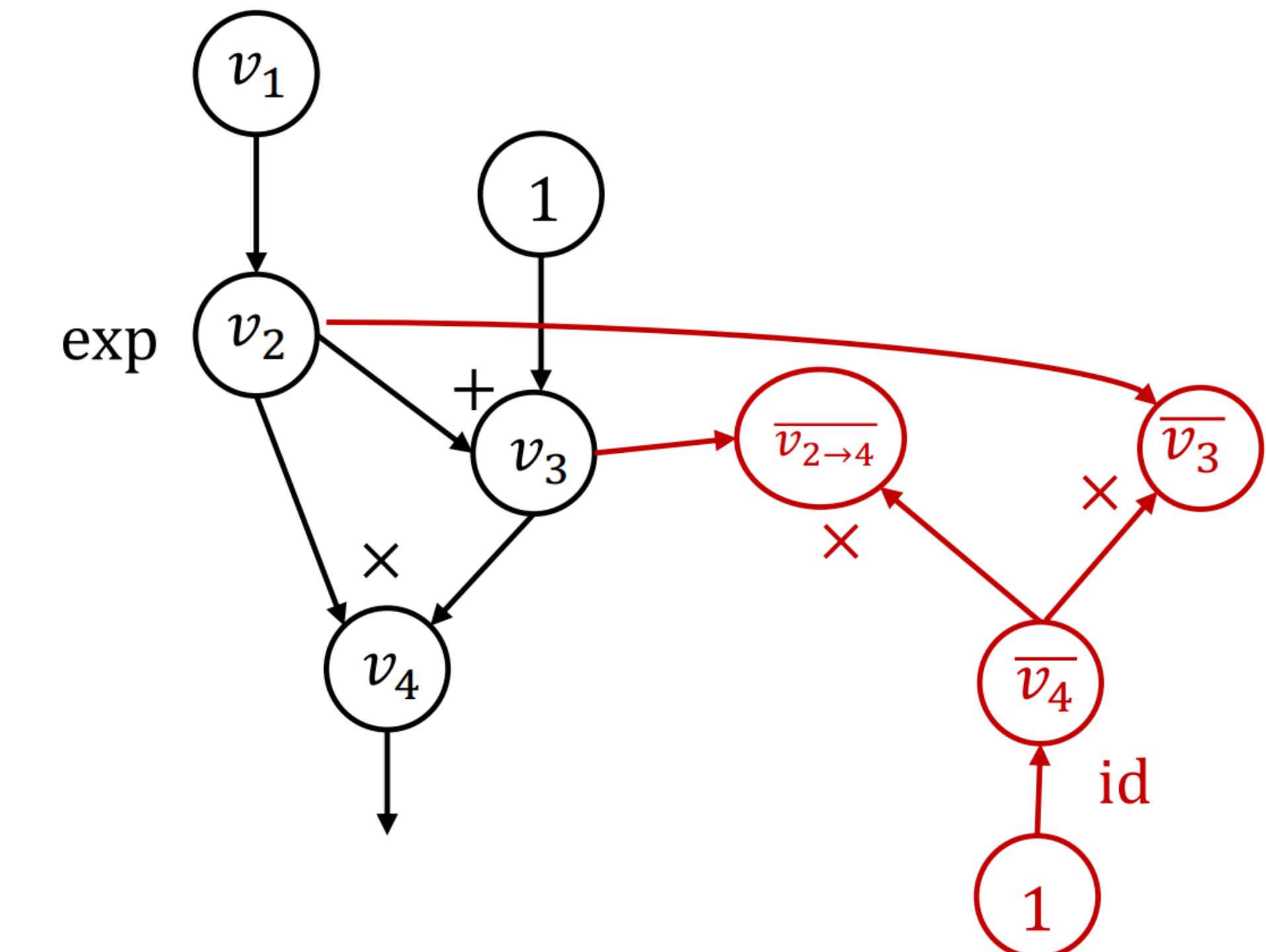
```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
         $\bar{v}_i = \sum_j \bar{v}_{i \rightarrow j} = \text{sum}(\text{node\_to\_grad}[i])$ 
        for k in inputs(i):
            compute  $\bar{v}_{k \rightarrow i} = \bar{v}_i \frac{\partial v_i}{\partial v_k}$ 
            append  $\bar{v}_{k \rightarrow i}$  to node_to_grad[k]
    return adjoint of input  $\bar{v}_{\text{input}}$ 
```

$i = 4$
 $\text{node_to_grad: } \{$
 $2: [\bar{v}_{2 \rightarrow 4}]$
 $3: [\bar{v}_3]$
 $4: [\bar{v}_4]$
 $\}$

$$i=4: \bar{v}_4 = \text{sum}([1]) = 1$$

$$k=2: \bar{v}_{2 \rightarrow 4} = \bar{v}_4 \frac{\partial v_4}{\partial v_2} = \bar{v}_4 v_3$$

$$k=3: \bar{v}_{3 \rightarrow 4} = \bar{v}_4 \frac{\partial v_4}{\partial v_3} = \bar{v}_4 v_2, \bar{v}_{3 \rightarrow 4} = \bar{v}_3$$



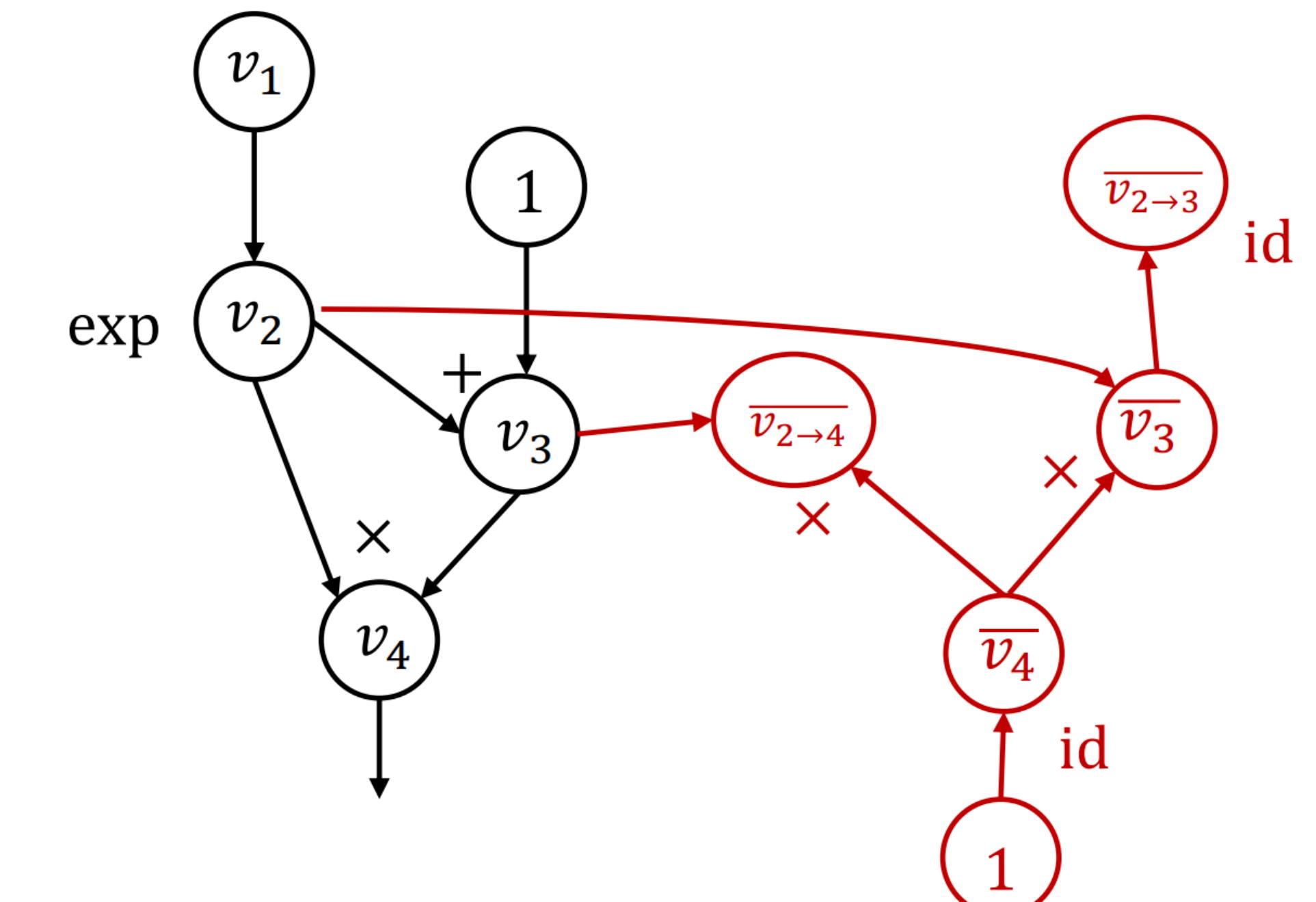
Inspect v_3

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
         $\bar{v}_i = \sum_j \bar{v}_{i \rightarrow j} = \text{sum}(\text{node\_to\_grad}[i])$ 
        for k in inputs(i):
            compute  $\bar{v}_{k \rightarrow i} = \bar{v}_i \frac{\partial v_i}{\partial v_k}$ 
            append  $\bar{v}_{k \rightarrow i}$  to node_to_grad[k]
    return adjoint of input  $\bar{v}_{input}$ 
```

$i = 3$
 $\text{node_to_grad: } \{$
 $2: [\bar{v}_{2 \rightarrow 4}, \bar{v}_{2 \rightarrow 3}]$
 $3: [\bar{v}_3]$
 $4: [\bar{v}_4]$
 $\}$

$i=3: \bar{v}_3$ done!

$$k=2: \bar{v}_{2 \rightarrow 3} = \bar{v}_3 \frac{\partial v_3}{\partial v_2} = \bar{v}_3$$



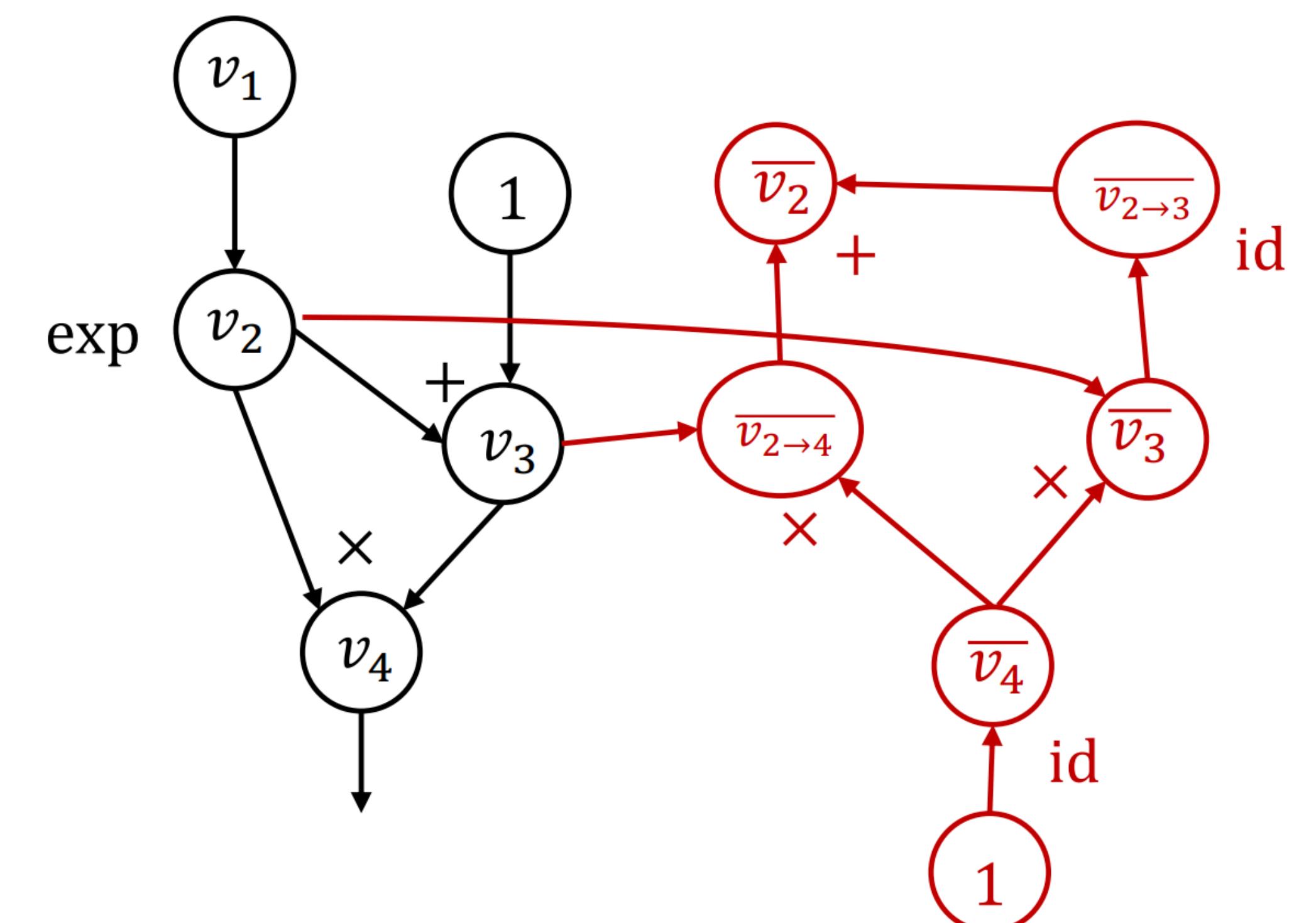
$$i=2: \bar{v}_2 = \bar{v}_{2 \rightarrow 3} + \bar{v}_{2 \rightarrow 4}$$

Inspect v_2

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
        →  $\bar{v}_i = \sum_j \bar{v}_{i \rightarrow j} = \text{sum}(\text{node\_to\_grad}[i])$ 
        for k in inputs(i):
            compute  $\bar{v}_{k \rightarrow i} = \bar{v}_i \frac{\partial v_i}{\partial v_k}$ 
            append  $\bar{v}_{k \rightarrow i}$  to node_to_grad[k]
    return adjoint of input  $\bar{v}_{\text{input}}$ 
```

$i = 2$

```
node_to_grad: {
    2: [ $\bar{v}_{2 \rightarrow 4}$ ,  $\bar{v}_{2 \rightarrow 3}$ ]
    3: [ $\bar{v}_3$ ]
    4: [ $\bar{v}_4$ ]
}
```



Inspect (v_1, v_2)

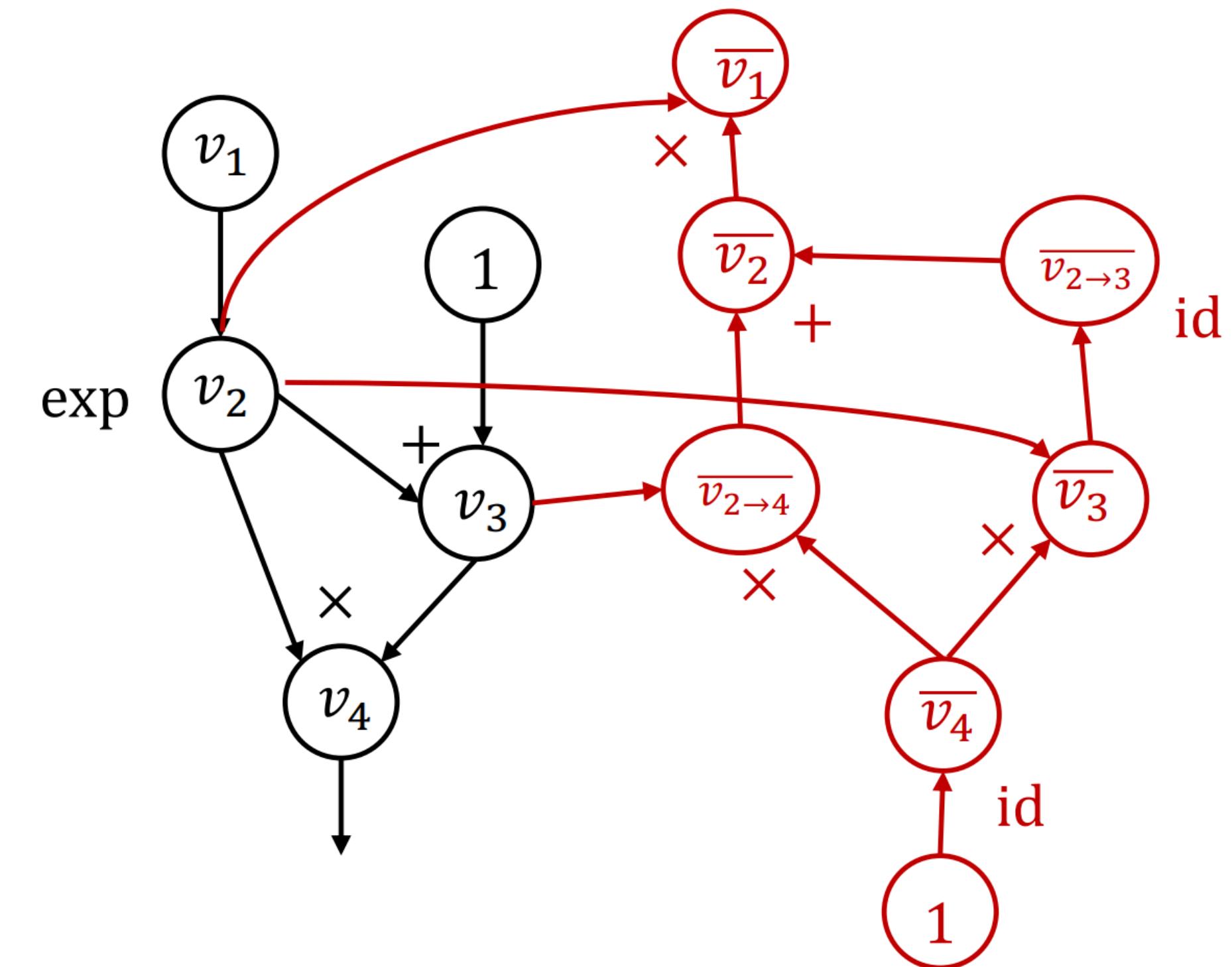
```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
         $\bar{v}_i = \sum_j \bar{v}_{i \rightarrow j} = \text{sum}(\text{node\_to\_grad}[i])$ 
        for k in inputs(i):
            compute  $\bar{v}_{k \rightarrow i} = \bar{v}_i \frac{\partial v_i}{\partial v_k}$ 
            append  $\bar{v}_{k \rightarrow i}$  to node_to_grad[k]
    return adjoint of input  $\bar{v}_{input}$ 
```

$i = 2$
 $\text{node_to_grad: } \{$
 $1: [\bar{v}_1]$
 $2: [\bar{v}_{2 \rightarrow 4}, \bar{v}_{2 \rightarrow 3}]$
 $3: [\bar{v}_3]$
 $4: [\bar{v}_4]$
 $\}$

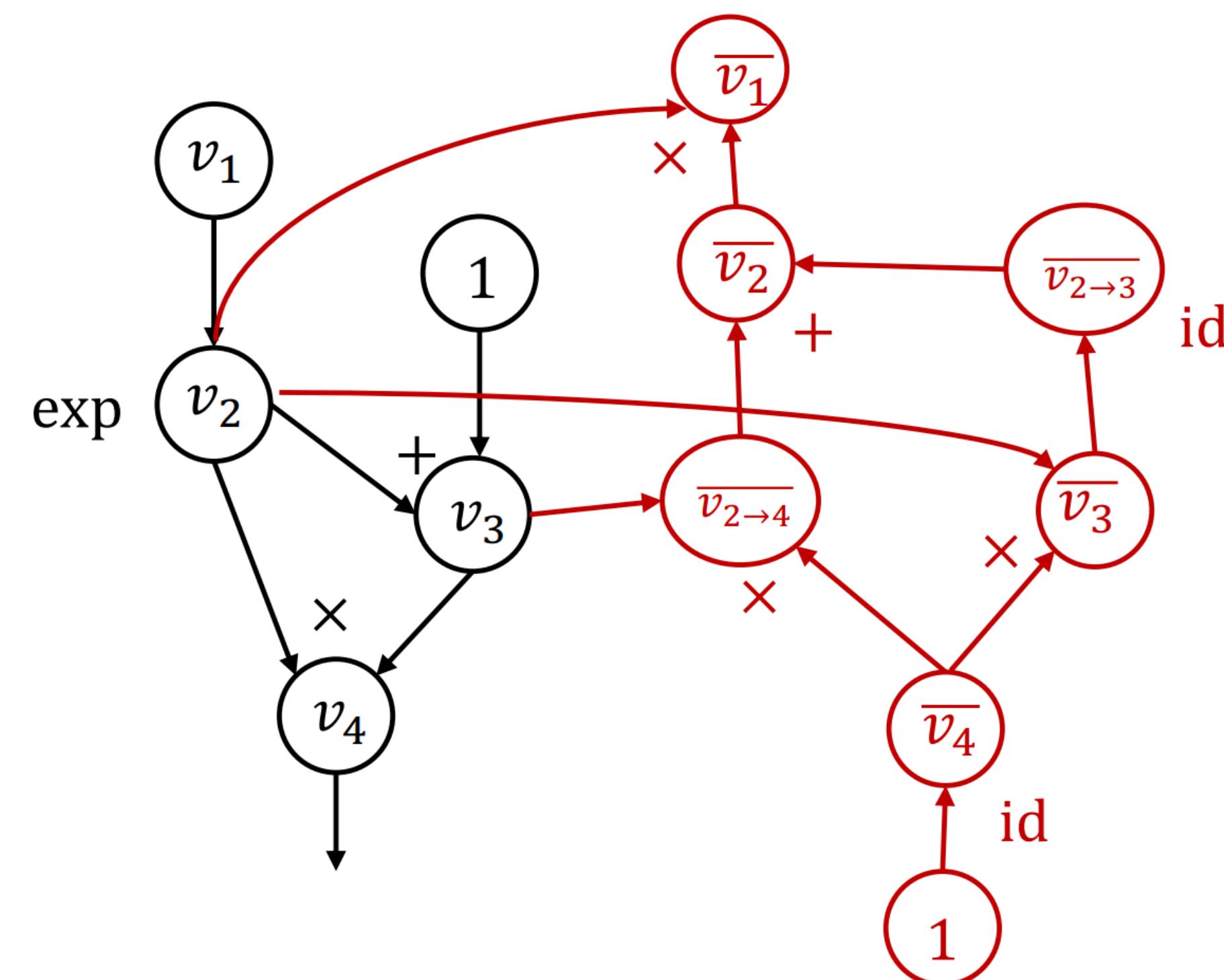
$$i=2: \bar{v}_2 = \bar{v}_{2 \rightarrow 3} + \bar{v}_{2 \rightarrow 4}$$

$$k=1: \bar{v}_{1 \rightarrow 2} = \bar{v}_2 \frac{\partial v_2}{\partial v_1} = \bar{v}_2 \exp(v_1),$$

$$\bar{v}_1 = \bar{v}_{1 \rightarrow 2}$$

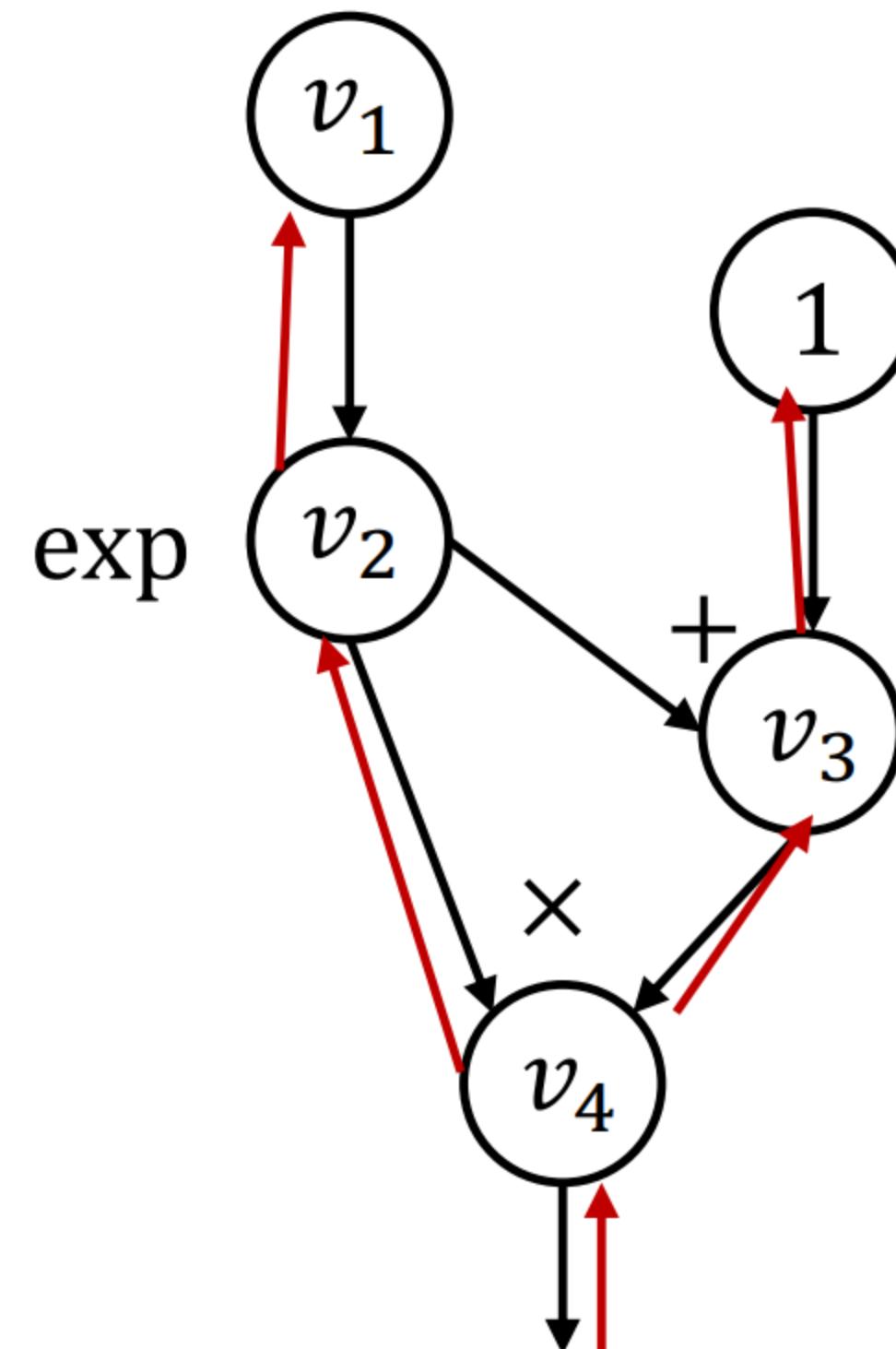


Summary: Backward AD

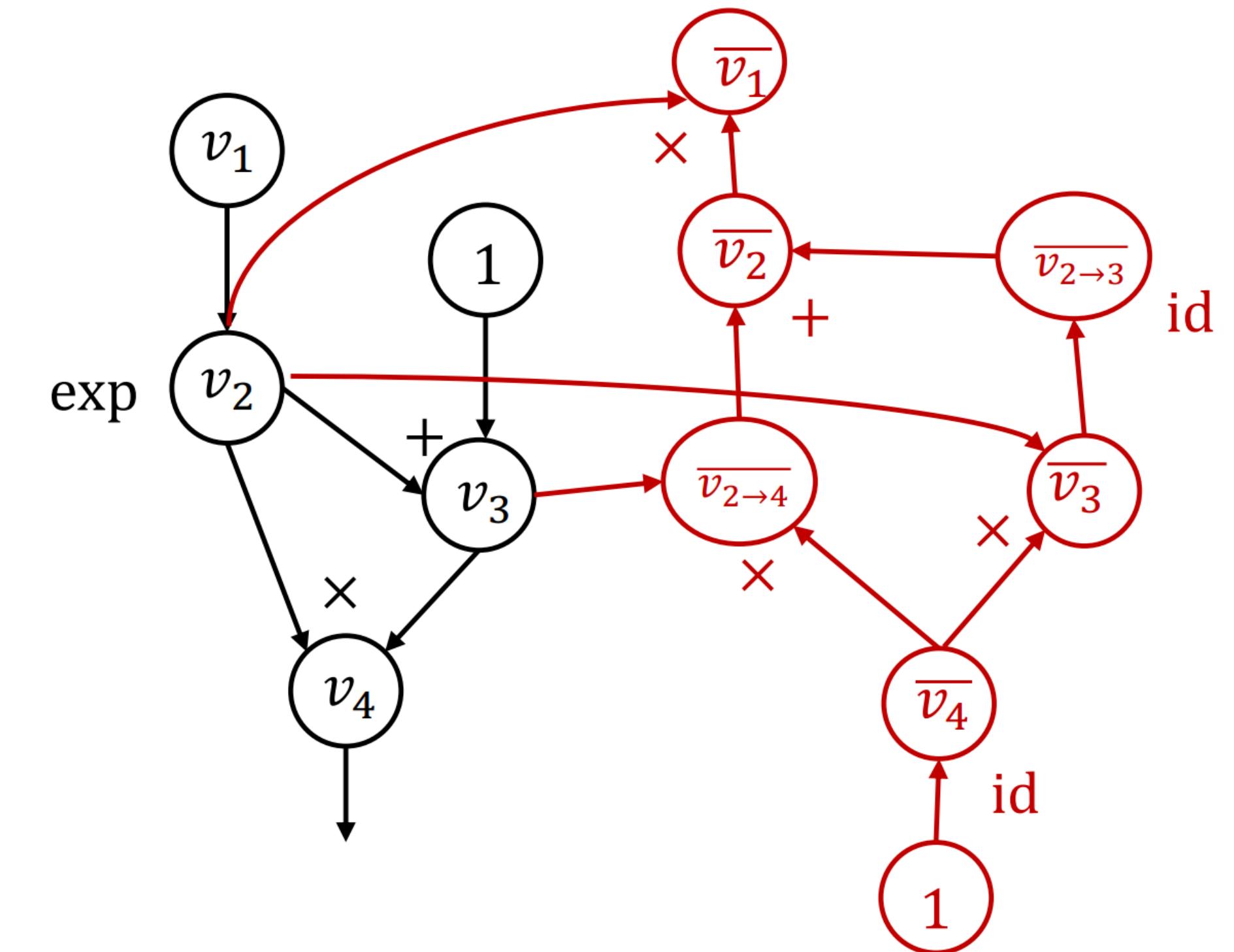


- Construct backward graph in a symbolic way (instead of concrete values)
- This graph can be reused by different input values

Backpropagation vs. Reverse-mode AD



vs.

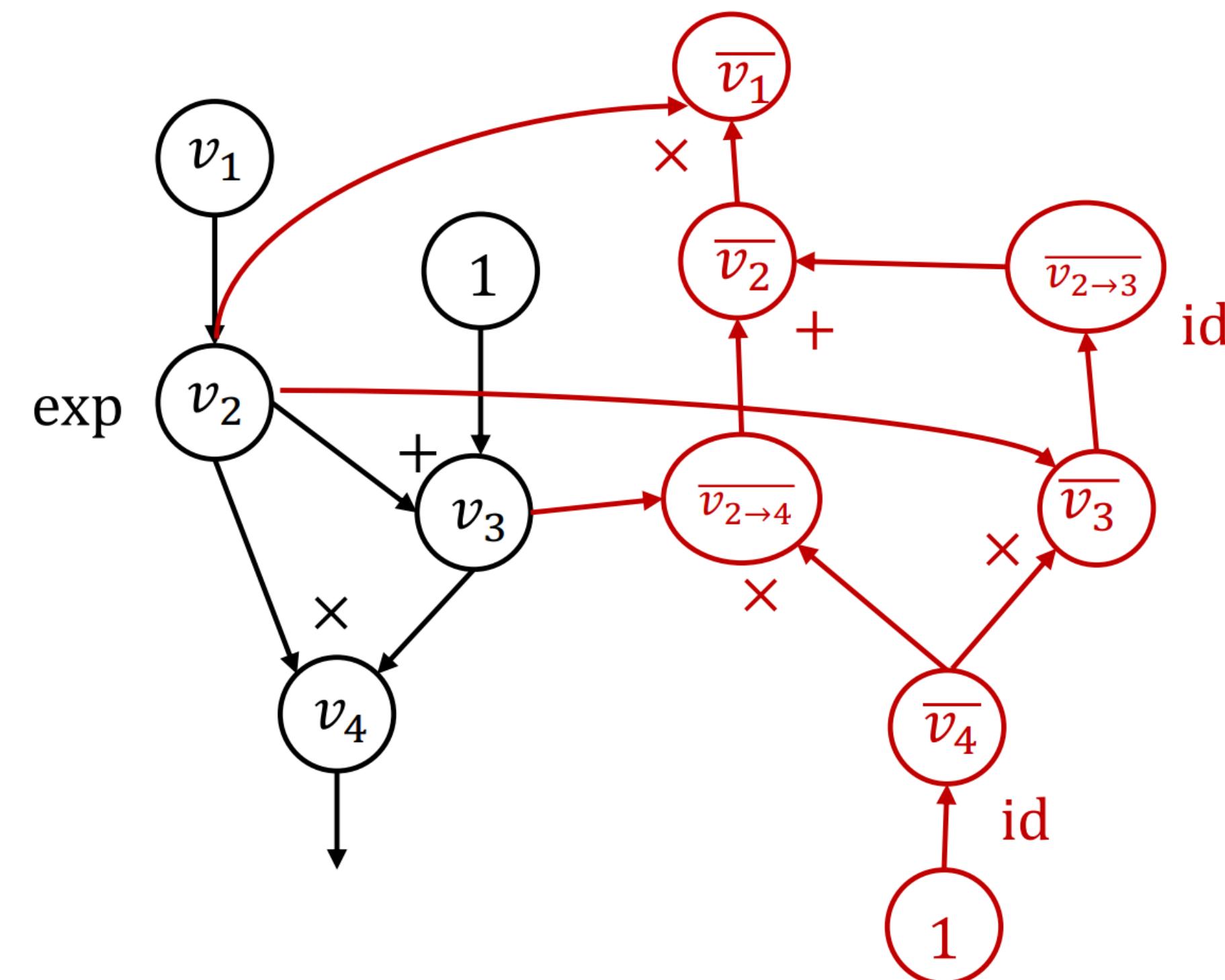


- Run backward through the forward graph
- Caffe/cuda-convnet

- Construct backward graph
- Used by TensorFlow, PyTorch

Incomplete yet?

- What is the missing from the following graph for ML training?



Recall Our Master Equation

$$\theta^{(t+1)} = f(\theta^{(t)}, \nabla_L(\theta^{(t)}, D^{(t)}))$$

$$L = \text{MSE}(w_2 \cdot \text{ReLU}(w_1 x), y) \quad \theta = \{w_1, w_2\}, D = \{(x, y)\}$$

$$f(\theta, \nabla_L) = \theta - \nabla_L$$

Forward

$$L(\cdot)$$

Backward

$$\nabla_L(\cdot)$$

Weight update

$$f(\cdot)$$

Put in Practice

$$\theta^{(t+1)} = f(\theta^{(t)}, \nabla_L(\theta^{(t)}, D^{(t)}))$$

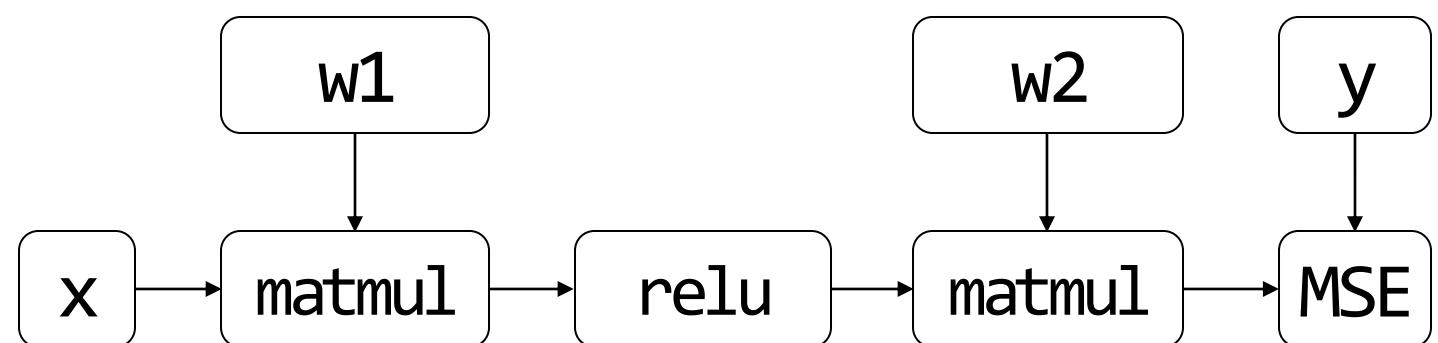
$$L = \text{MSE}(w_2 \cdot \text{ReLU}(w_1 x), y) \quad \theta = \{w_1, w_2\}, D = \{(x, y)\}$$

$$f(\theta, \nabla_L) = \theta - \nabla_L$$

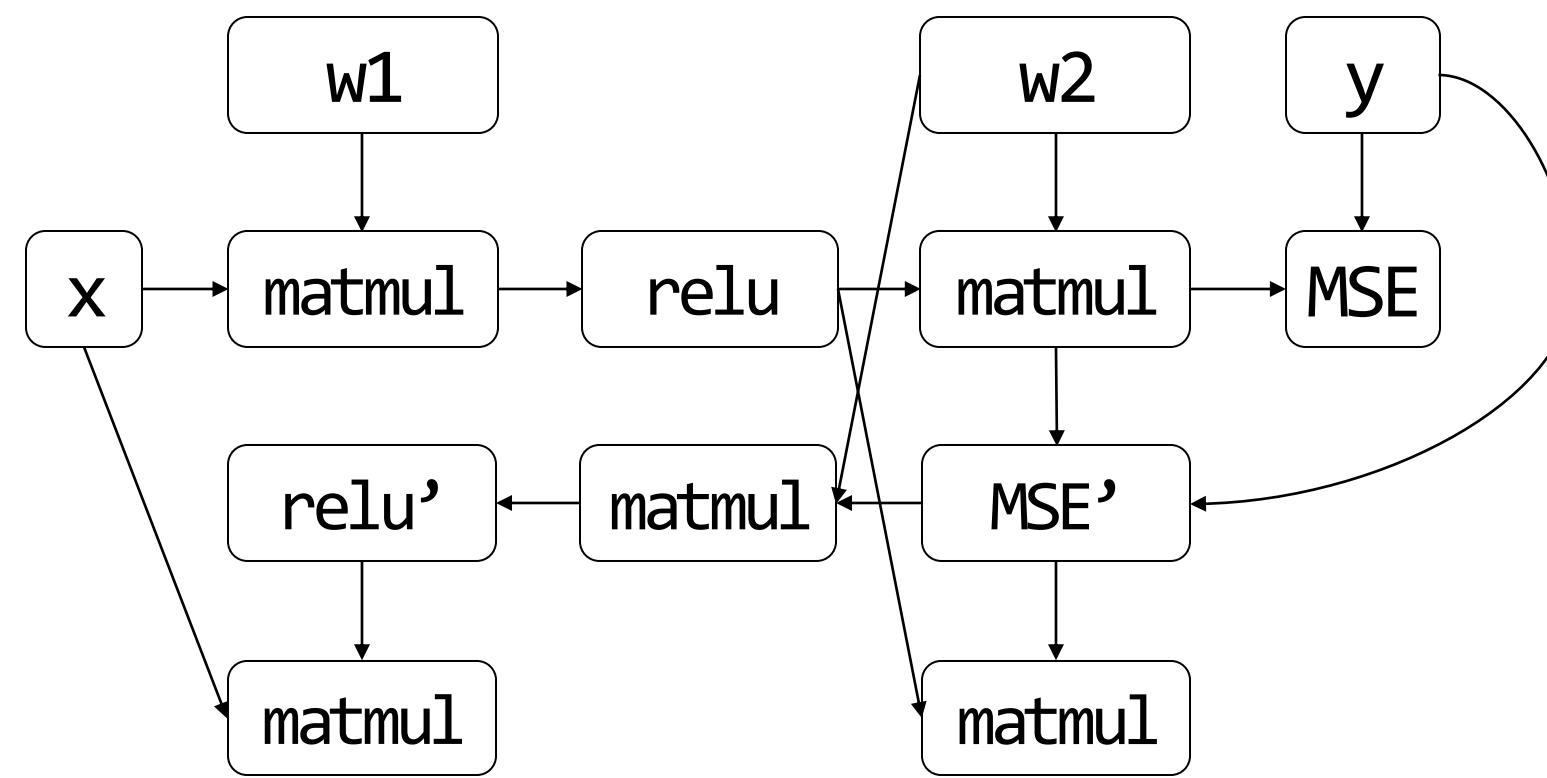
□ Operator / its output tensor

→ Data flowing direction

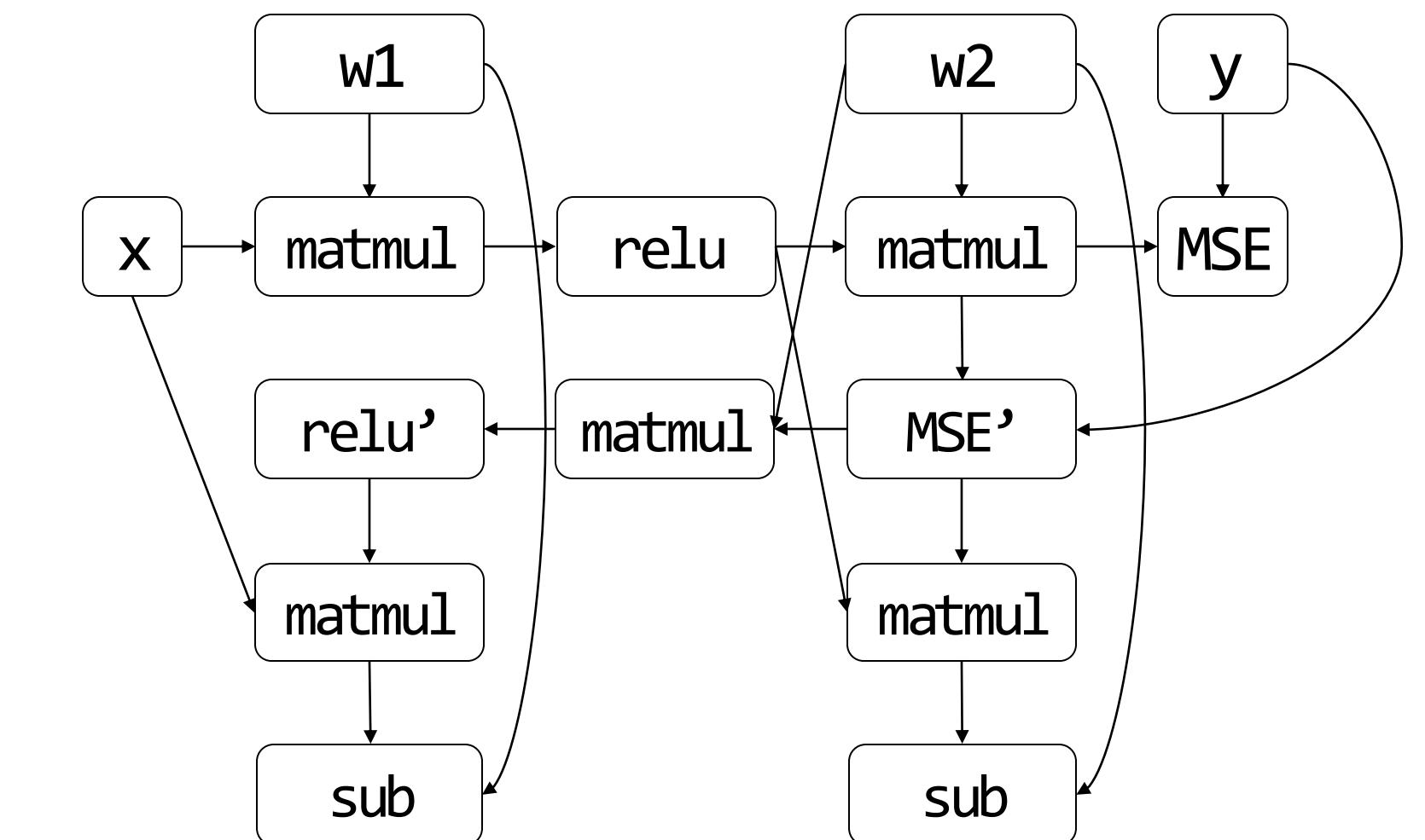
Forward



+Backward



+Weight update



Homework: How to derive gradients for

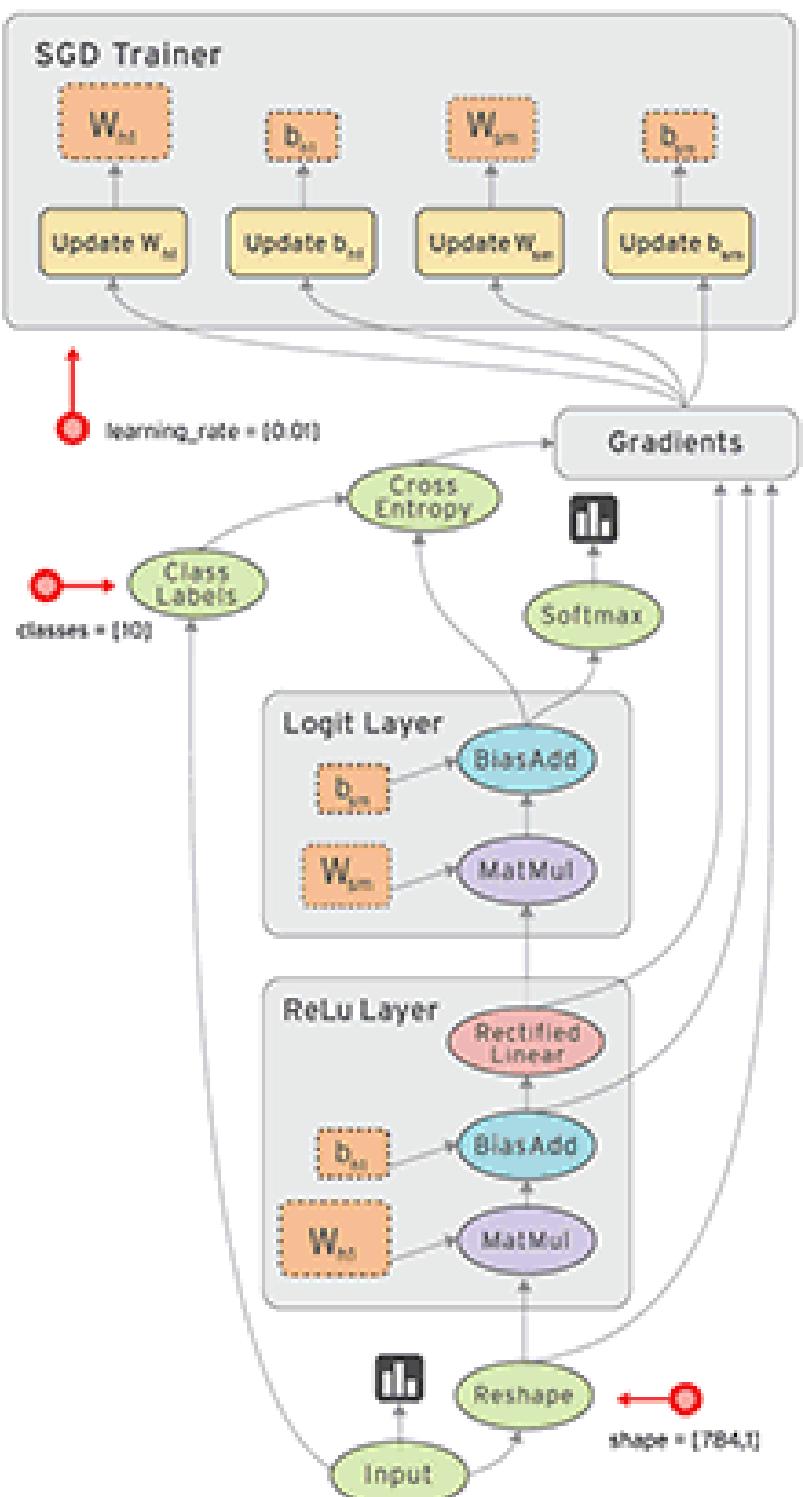
- Softmax cross entropy:

$$L = -\sum t_i \log(y_i), y_i = \text{softmax}(\mathbf{x})_i = \frac{e^{x_i}}{\sum e^{x_d}}$$

Today

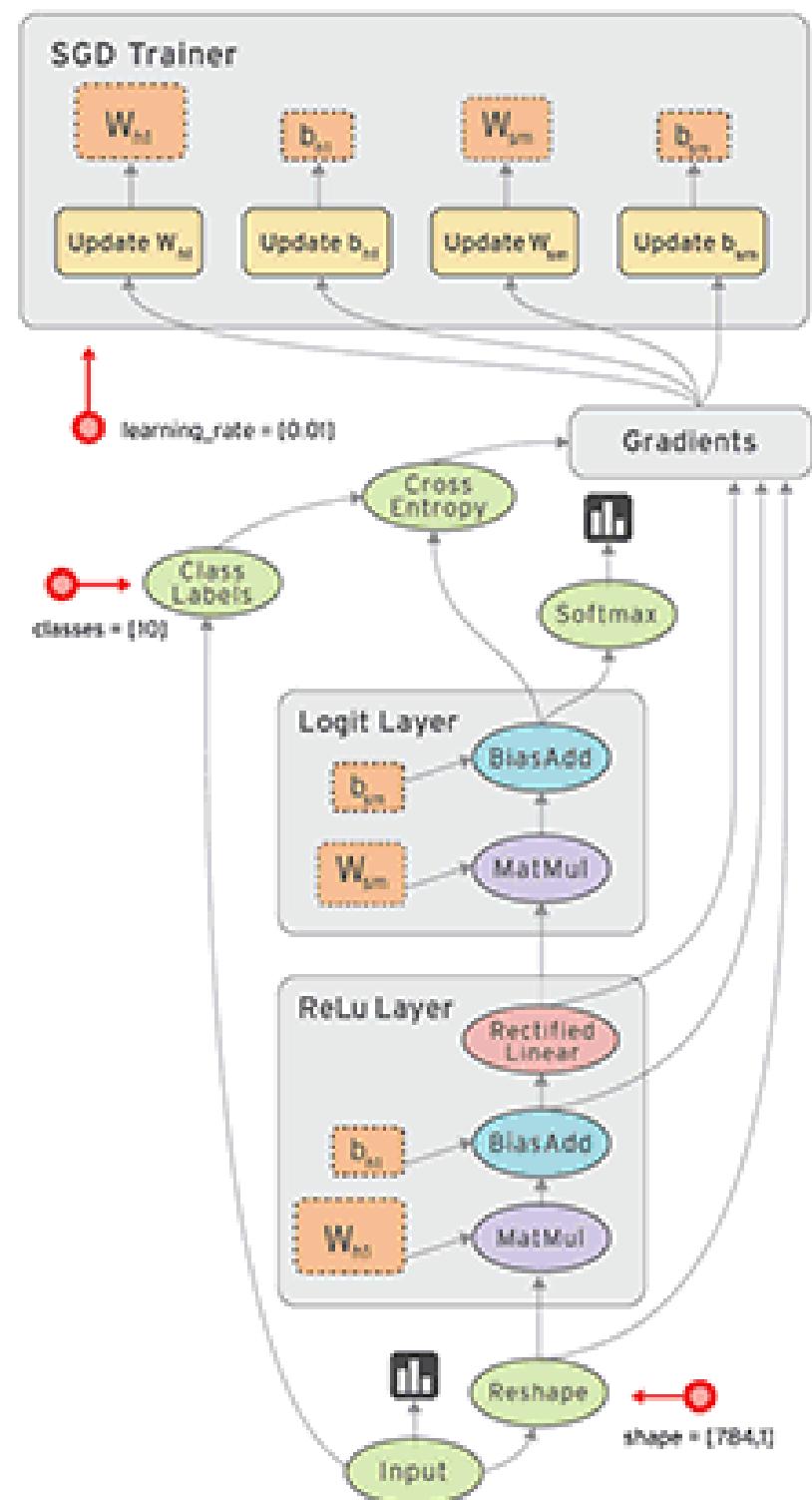
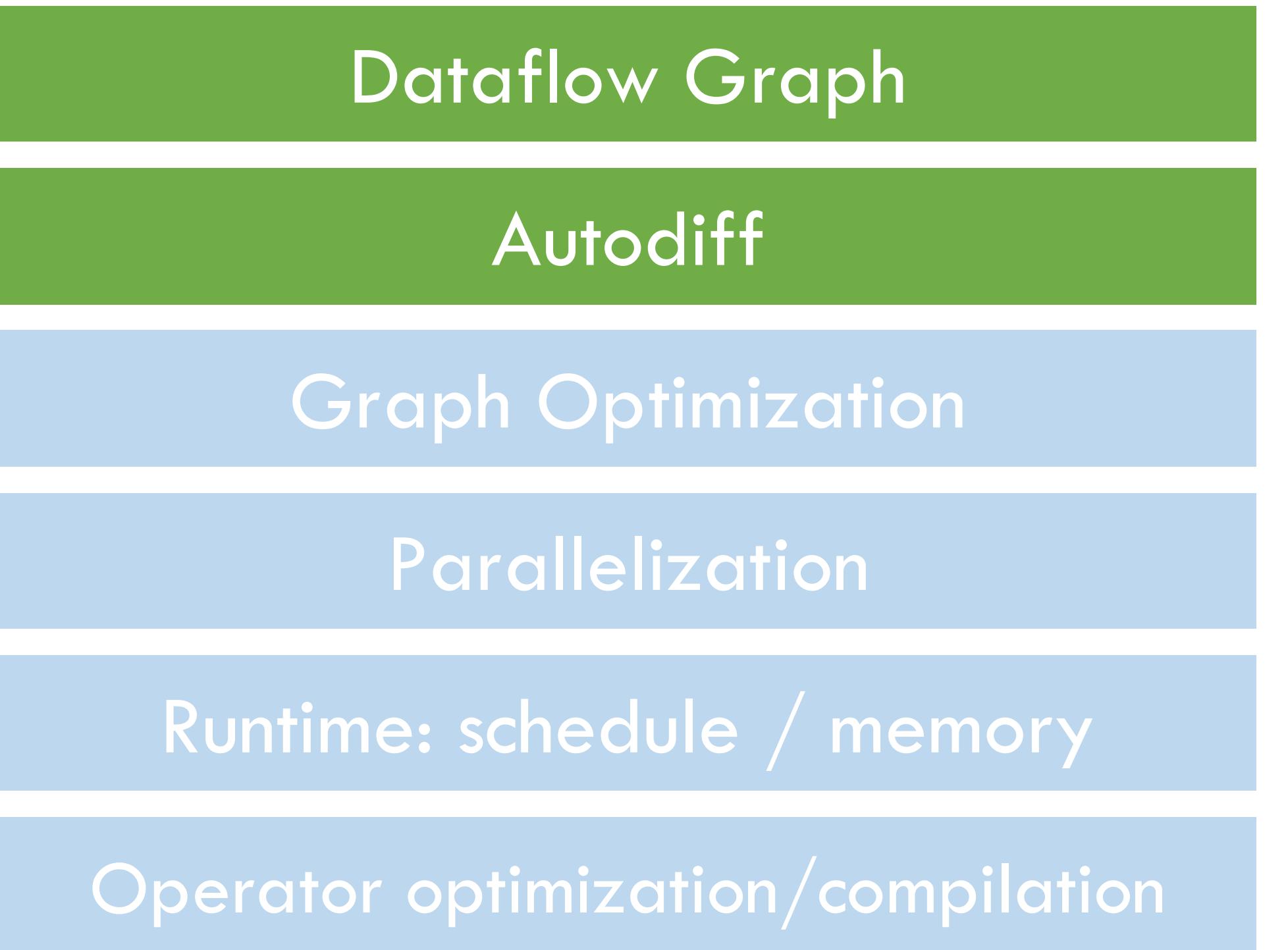
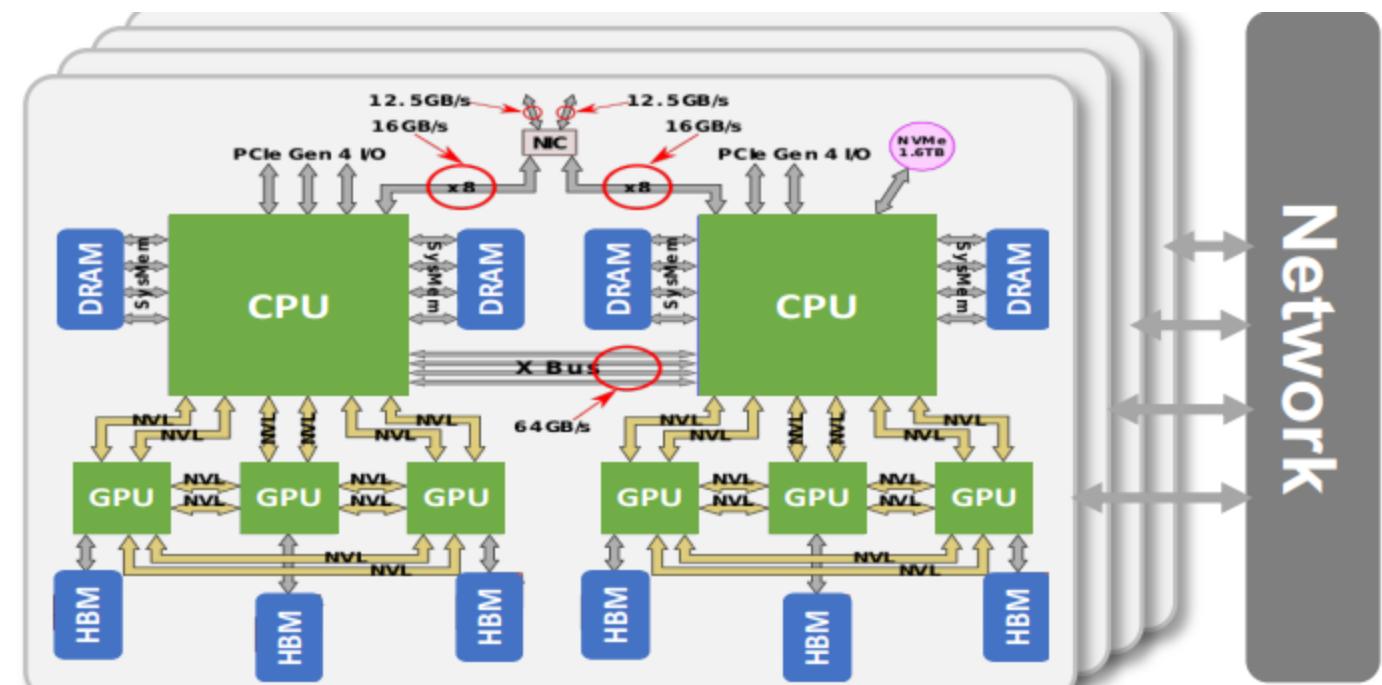
- Autodiff
- **Architecture Overview**

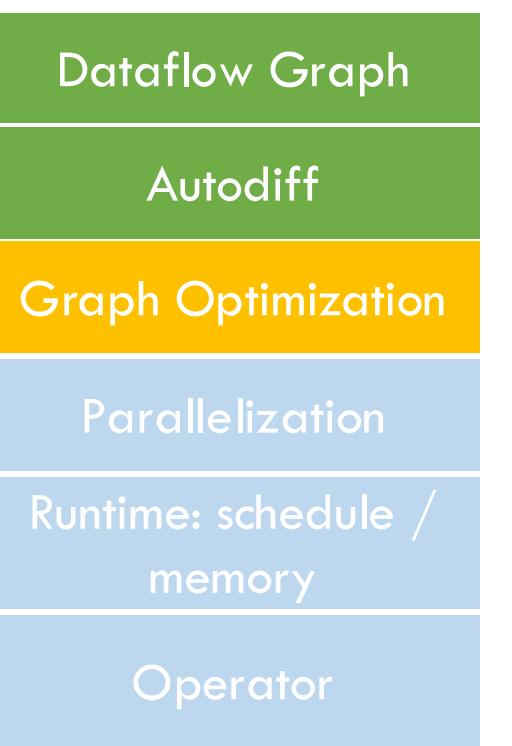
MLSys' Grand problem



- Our system goals:
 - Fast
 - Scale
 - Memory-efficient
 - Run on diverse hardware
 - Energy-efficient
 - Easy to program/debug/deploy

ML System Overview



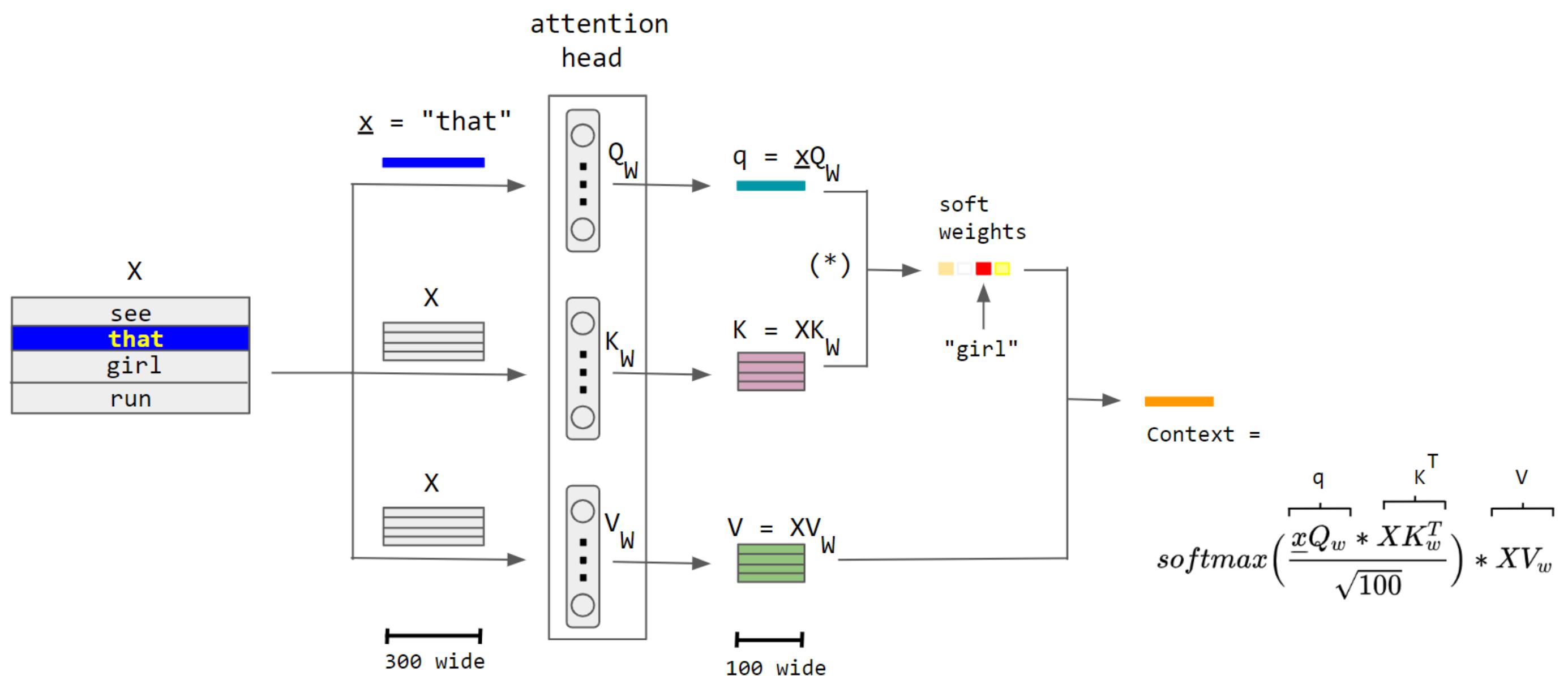


Graph Optimization

- Goal:
 - Rewrite the original Graph G to G'
 - G' runs faster than G

Dataflow Graph
Autodiff
Graph Optimization
Parallelization
Runtime: schedule / memory
Operator

Motivating Example: Attention



Original

```
Q = matmul(w_q, h)
K = matmul(w_k, h)
V = matmul(w_v, h)
```

Merged QKV

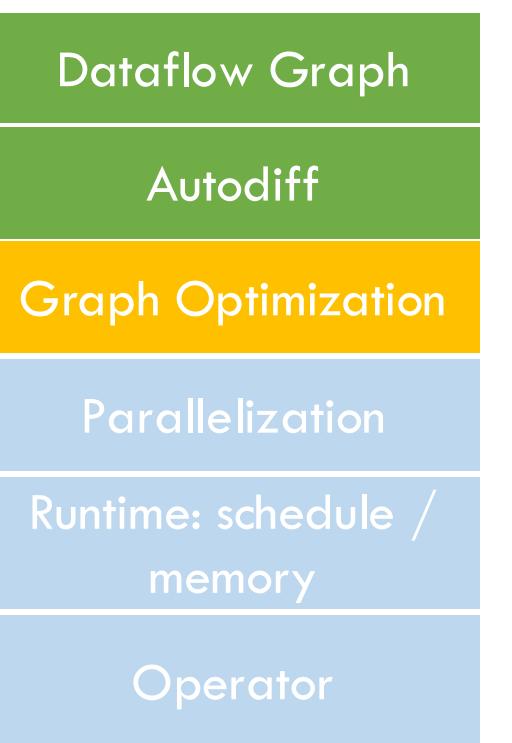
```
QKV = matmul(concat(w_q, w_k, w_v), h)
```

$$\text{softmax}\left(\frac{\underline{xQ}_w * \underline{XK}_w^T}{\sqrt{100}}\right) * \underline{XV}_w$$

- Why merged QKV is faster?

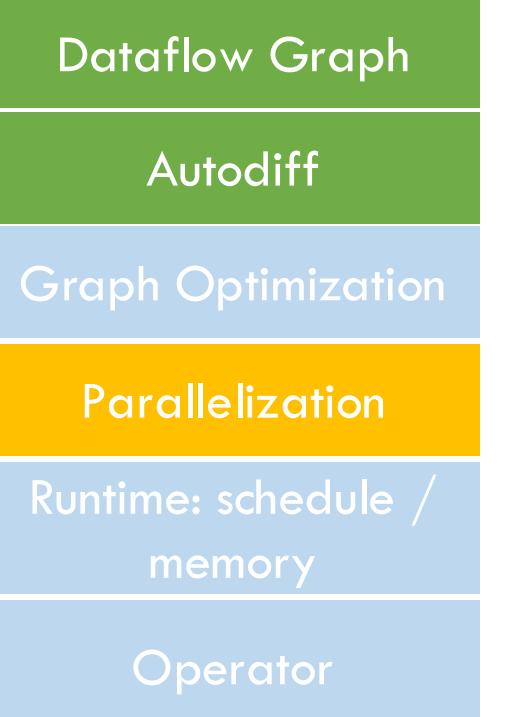
Arithmetic Intensity

$$AI = \#ops / \#bytes$$



How to perform graph optimization?

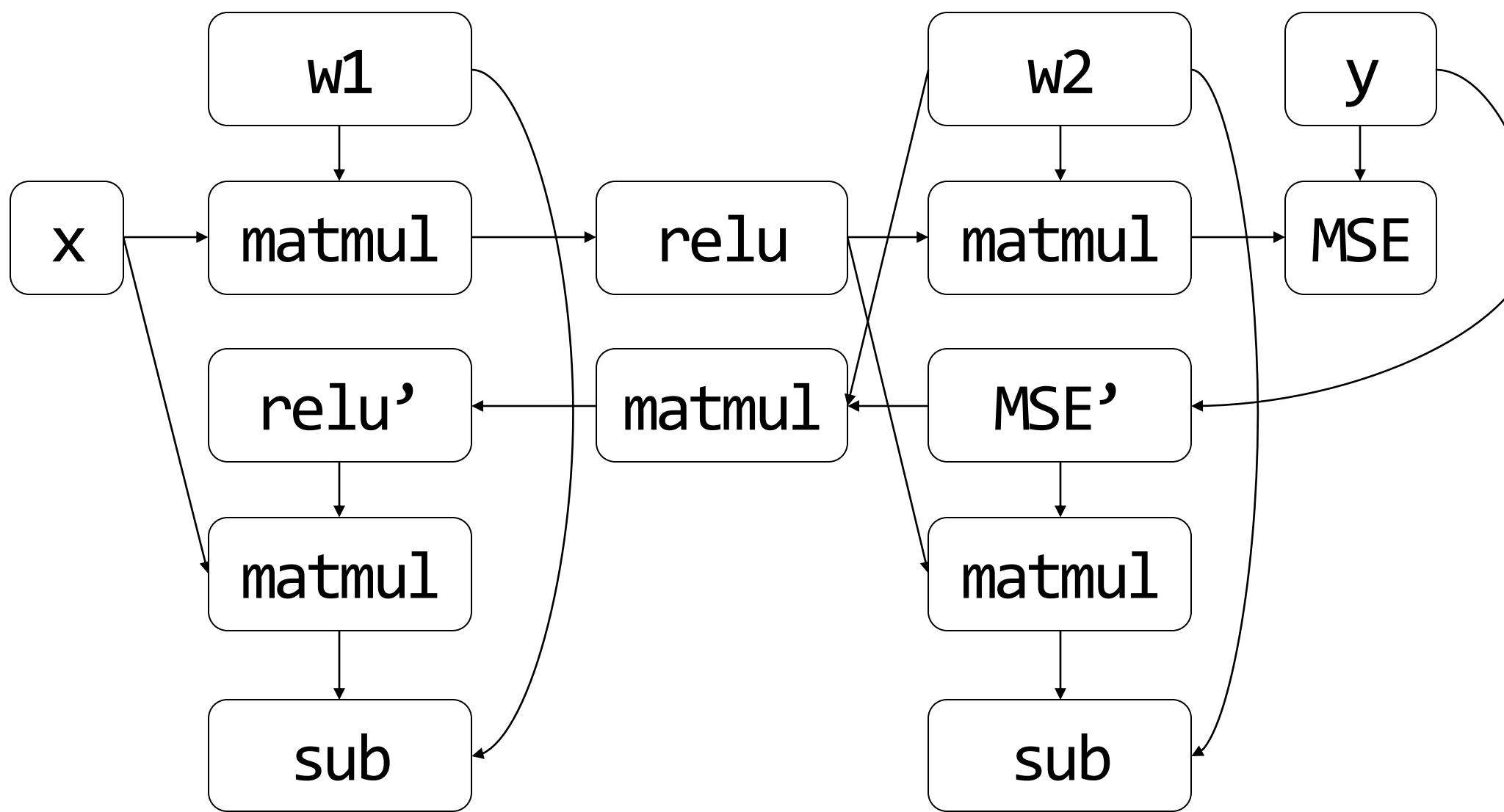
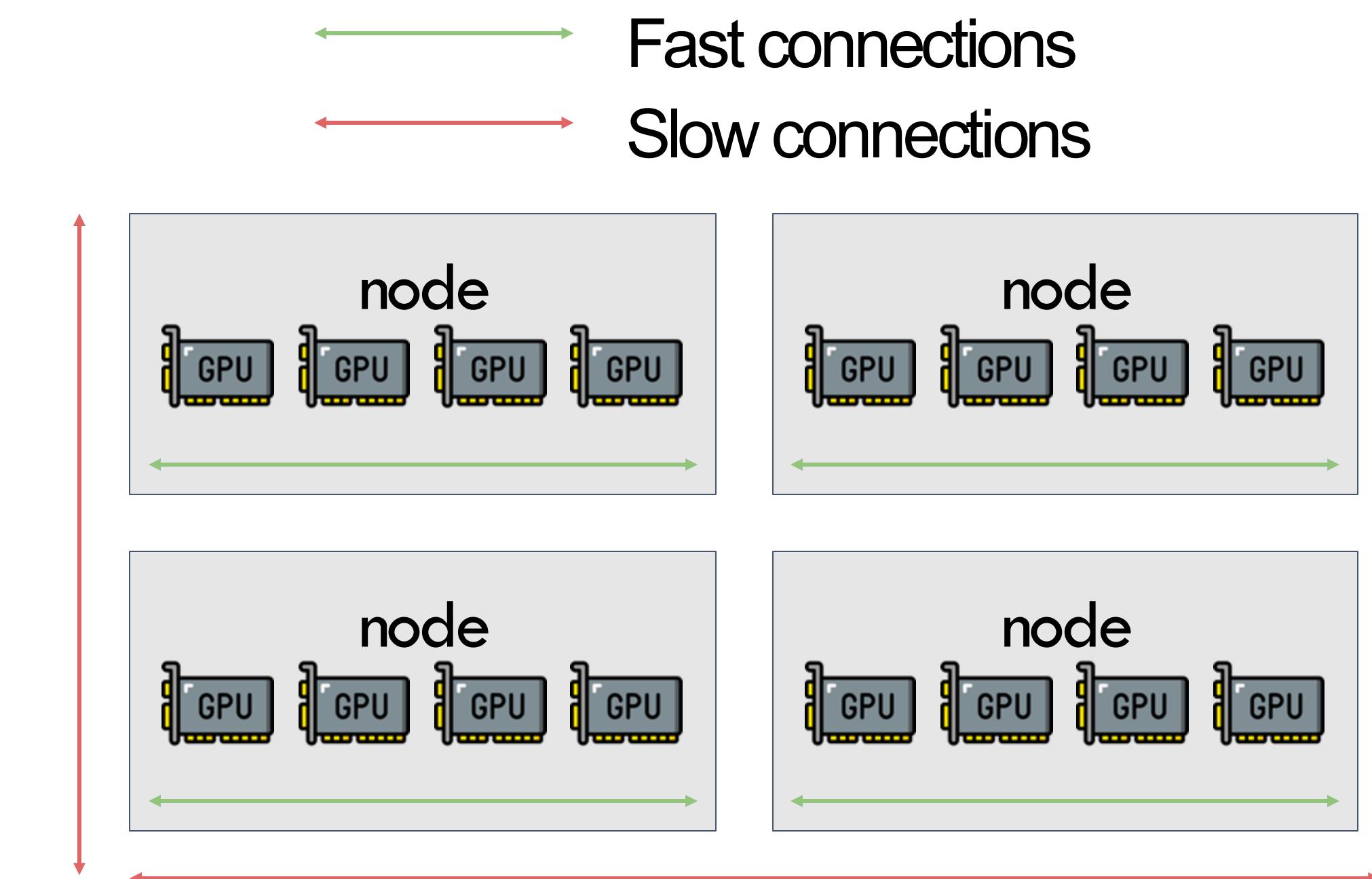
- Writing rules / template
- Auto discovery

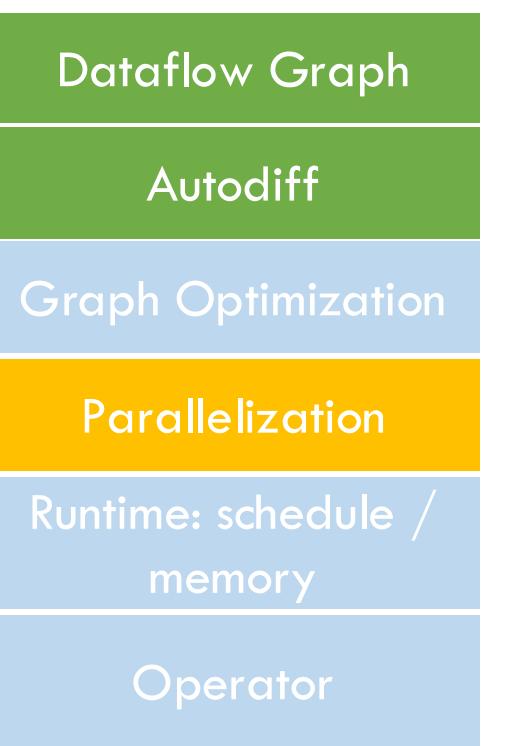


Parallelization

- Goal: parallelize the graph compute over multiple devices

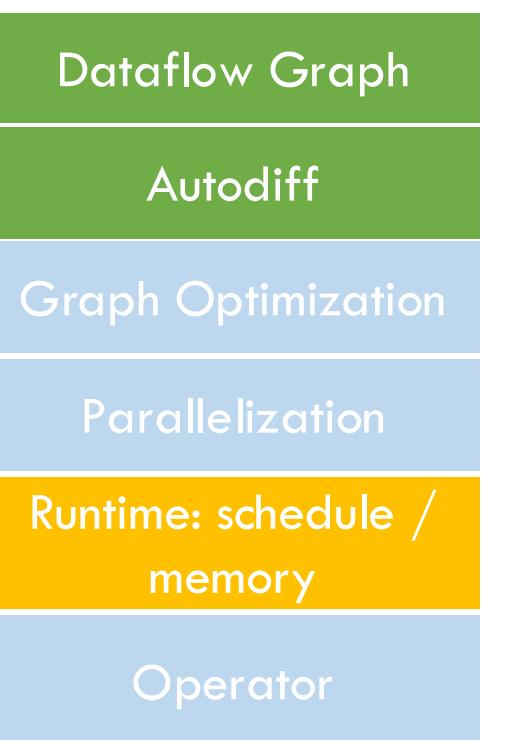
How to partition the computational graph on the device cluster?





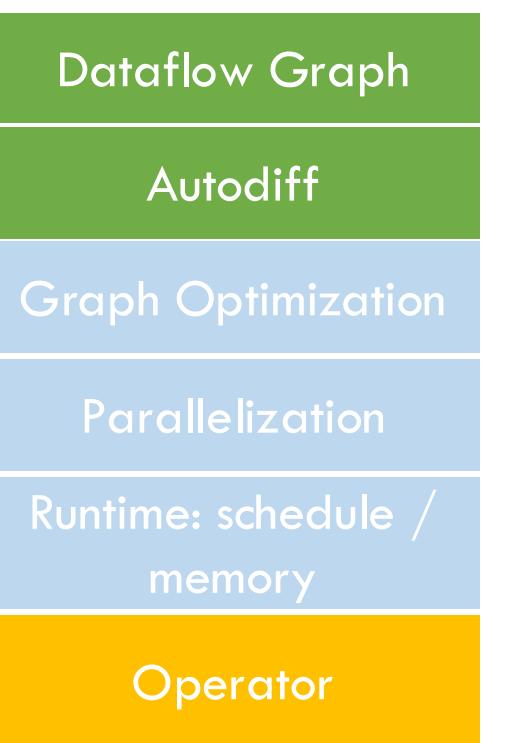
Parallelization Problems

- How to partition
- How to communicate
- How to schedule
- Consistency
- How to auto-parallelize?



Runtime and Scheduling

- Goal: schedule the compute/communication/memory in a way that
 - As fast as possible
 - Overlap communication with compute
 - Subject to memory constraints



Operator Implementation

- Goal: get the fastest possible implementation of
 - Matmul
 - Conv2d?
- For different hardware: V100, A100, H100, phone, TPU
- For different precision: fp32, fp16, fp8, fp4
- For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D, attention

High-level Picture

Data



Model

Math primitives
(mostly matmul)

A repr that expresses the computation using primitives

Compute

?

Make them run on (clusters of) different kinds of hardware