https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

LOoQistiCS

* All 4 Guest Lectures complete
®* Fugune Wu: classic DB + HCl researcher
* Shreya Shankar: Modern DB + HCl| researcher

* Andrey Cheng:
®* DB researcher, but now working on LLM for optimizing DB

* Junchen Jiang: networking, but want to propose a new type of
DB

* Fall 2025 Student Evaluations of Teaching were sent
* Again: if 80% of you finish the evaluation, all will get 2 bonus
points.

LOoQistiCS

We might need 1 — 2 extra lectures (beyond scheduled) to
compensate holiday interruptions

* Will decide depending on our progress

* [f happen — will on Zoom

Exam:
* all MCQ), TA will hold a recitation before exam
* Date and time: Dec 10, 11:30AM to 2:30PM
® | ocation; WLH2111

High-level Picture

Data Model Compute

(tl tmul) ?Mdke them run on (clusters
{xi}ni=1 HastieAiasin of) different kinds of
hardware

Math primitives

?A repr that expresses the
computation using primitives

Symbolic vs. Imperative (2016)

DyNet .
o S Caffe?
‘r'torch Chainer theano
o Caffe
PYTHRCH mxnet

Imperative Symbolic

Symbolic vs. Imperative (2024)

PYTORCH

—

Imperative Symbolic

Symbolic vs. Imperative (2024)

PYTORCH

—

Imperative Symbolic

Just-in-time (JIT) Compilation

* |deally, we want define-and-run during

* We want define-then-run during

* QQ: how can combine the best of both worlds?

@torch.compile()

X = torch.Tensor([3]) X = torch.Tensor([3])
y = torch.Tensor([2]) y = torch.Tensor([2])
Z =X - Y Z =X - Y
loss = square(z) loss = square(z)
loss.backward() loss.backward()
print(x.grad) print(x.grad)

Dev mode Deploy mode:

Decorate torch.compile()

What happens behind the scene

Graph Graph Graph
Acquisition Lowering Compilation
Izlg'tl"ADz:‘oagT:d ATen/Prim IR It::’utiglnductor (default) powered by Triton
' . : Your Own Backend
\ nvFuser
FTVM
- XLA
, AlTemplate
 TensorRT
: ; = m M| oMo m oo
@torch.compile() . . - La T T
| v : EEm L Umm
def fOO(X): . | Comzd | Conv RNl bias |
y = F.conv2d(x, ...) v v | s eeBl [EEE
APl — ENNE 2 — x| - — "1 1. ‘B 1. "3 1
return F.relu(z) v | o i b
. [
/) | mo RN om
[YI max(x%,0) | EEN EEN EEN
v 7 EEN EE EEN

What is the problem of JIT?
Requirements for static graphs

Q: What is the problem of JIT¢

A: Requirements for stafic graphs

Static Models vs. Dynamic Models

Dataflow graph
- N - N
e N e N
s — [convad H pool H conv2d } v D
\\ X K\ y
N S N Y
e [LSTM } S [LSTM }
[LS } [LSTH } NP VP [LSTM } LSTM
[LSTH } LSTH } v NP [LSTM [LSTM } [LSTM } [LSTM }
[LSTH } [LSTH } [LSTM }[LSTM }
T ------------------------- } --------------- The gl picked | | e
John hit the ball the con The gir picked the coin

High-level Picture

Data Model Compute

(tl tmul) ?Mdke them run on (clusters
{xi}ni=1 HastieAiasin of) different kinds of
hardware

Math primitives

?A repr that expresses the
computation using primitives

What happens behind the Scene (Cond.)

W grad = tf.gradients(cross _entropy, [W])[9]

Automatic Differentiation, more details in
follow up lectures

matmult softmax

cross_entropy
log }———+[mul jk—ﬂ{ mean]————*

__

W grad:(matmult- | ‘ |
“ EL_ transpose softmax-grad]+4: log-grad mul 1 / batch size

--

Expand it a Bit

A repr that expresses the
computation using
primitives

A repr that expresses the
computation using primitives

? A repr that expresses the
backward computation using
primitives

Recap: how to take derivativee

Given f(6), whati S~ af ?

INnstead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

a(f(8) +g(8)) af(6) 59(9)

o]y, o]y, o]y,

d(f(0)q(0 df (6 0g(@
(f(a)ég())_9(9) f() 1 F(O) g()

0(f(g(6)) 0f(g(6))ag(6)

00 0g(0) 90

Map autodiif rules to computational graph

y = f(xq,x,) = In(xq) + x;x, — sinx,

X1
9
* Q: Calculate the value of =X
y 0x4
X, ® A: use PD and chain rules

Forward evaluation trace
Ul — x1 — 2
172 — x2 — 5
v3 =Invy =In2 = 0.693

v, =XV, =10
Ve = sinv, =sinb5 = —0.959
U6 — 173 + U,gl, = 10.693

Uy = Vg — Ve = 10.693 + 0.959 = 11.652
y = vy, = 11.652

Reverse Mode AD

]) (] L] — a
y = f(x1,%;) = In(x;) + x,x, — sinx, * Define adjoint 7; = >
i
X e
' * We then compute each v; in the
y :
reverse topological order of the graph
X5 __0y
¢ dv-
. __0v; __
Forward evaluation trace vﬁzv?gz"?’”:l
v, =2x; =2 —5=v—76—v:=v—7x(—1)=—1
172=x2=5 :::%:T@X1:1
v =lnv; =In2 = 0.693 I
v3—v6ﬁ—v6x1—1
174 — le vz — 10 . _avg _51;4 L L
175 — sin 172 — sin 5 — _0959 U5 :vsa—w+v4a—w=v5xcosv2+v4xv1 = —0.284+ 2 =1.716
Vg = V3 + 1, = 10.693 v—lzm%+v—3%=v—4xvz+ v—3v1:5+%:5.5

v, = v, — v = 10.693 + 0.959 = 11.652

= = 11.652 . 0 _
Y= * Finally: = =7, =55
axl

Case Study

OO0
©

How to derive the gradient of v,

v— —_ ay — af(v21v3) avz _I_ af(v21v3) av3
1 6121 01}2 61)1 6173 6v1

v, | — 0vs
=Ty —2 + Vg —>
dvy O vy

For a v; used by multiple consumers:

avj

’,71: — Z vi—>j Where ’Ul_}] — '17] %
l

JENnext(i)

Summary: Backward Mode Autodiff

® Starf from the output nodes

®* Derive gradient all the way back to the input node

Back to Our Question

A repr that expresses the
computation using
primitives

A repr that expresses the
computation using primitives

? A repr that expresses the
backward computation using
primitives

Back to our question: Construct the Backward Graph

* How can we construct a computational graph that calculates the adjoint value®e

def gradient(out):
node to grad = {out: [1]}
for i in reverse topo order(out):
U; = XjVUis; = sum(node_to_grad[i])
for k € inputs(i):

compute vy_,; = V; Py
k

append 7,_,; to node_to_grad[k]
return adjoint of input U,y

f: (exp(v1) + Dexp(vy)

How to Implement reverse Autodift (aka. BP)

Record all partial adjoints of a

def gradient(out): /////,///”///d node

node to grad = {out: [1]}

for i in reverse_topo_order(out):
U; = LV, = sum(node_to_grad[i]) -
for k € inputs(i):

compute v,_,; = v; Py
k

- Sum up all partial adjoints to
get the gradient

. Compute and propagates
partial adjoints to its inputs.

append V,_; to node_to_grad[k]| -
return adjoint of input U,y

Start from v,

def gradient(out):
node_to grad = {out: [1]}

for i in reverse _topo order(out):
» v, = Zj U;; = sum(node_to_grad[i])
for k € inputs(i):
compute v,_,; = v;

6vi

oV

append v,_,; to node_to_grad[k]|
return adjoint of input V¢

(ZZT
node_to _grad: {

4: [v4]
}

—

exp

i = 4: v, = sum(|1])

id

i=4: v, = sum(|1]) =1

_ e 81)4 =
v,: Inspect (v,,v,) and (vs, v,) K=2:Vpoq = Vg = VsV
_ — 6174 _ _
k=3: U3_,4 = Vg5 = VsV, V354 = VU3
def gradient(out): V3
node_to grad = {out: [1]} @
for i in reverse_topo_order(out):
v; = Zj V;; = sum(node_to_grad[i]) @

for k € inputs(i):
o (2
compute vy _,; = v; oo +
- append 7v,_,; to node_to_grad[k] @ X @
return adjoint of input U,y X

i =4
node to grad: {
\ 2: [_v2—>4]

id

4: [v,]

—

INspect v,

def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo_order(out):
U; = 2jVis; = sum(node_to_grad[i])
for k € inputs(i):
compute v,_,; = v;

6vi

avk
- append v,_; to node_to_grad[k]
return adjoint of input Ui,y

i =3
node to grad: {
2: [V354, V53]
3: [73]
4: [v,]

}

—

i=3: U3 donel

_ 8173 _

k=2: VUyp_3 = Vg 6_172 = Vs

,-d
D

on (3
| e

(") 4

(=) 0™
X

id

Inspect v,

def gradient(out):
node_to _grad = {out: [1]}
for i in reverse_topo_order(out):

M) U, = X7, = sun(node_to_grad[i])

l

|

}

node_to_grad: {

for k € inputs(i):

— 6vi
compute Vy_,; = V;

avk

append V,_,; to node_to_grad[k]
return adjoint of input U ,y;

= 2

20 [V354,V253]

3: [v3]
4: [v,]

——

i=2: U = Vo3 T Vpy

exp

O @

I

V253

id

id

Inspect (vq, v,)

def gradient(out):
node_to grad = {out: [1]}
for i in reverse_topo _order(out):
U; = XjVis; = sum(node_to_grad[i])
for k € inputs(i):
compute Vy_; = V;

6v,;

avk
- append v,_,; to node_to_grad[k]
return adjoint of input Vi, ¢

[= 2

node_to_grad: {
1: [v4]

| 2: [Uz_)4,1)2_>3]
3: [v35]
4: [V,]

}

— i

T — ——

i=2: U = Vo3 T Vpy

_ — sz —
k=1: V15 = 1, ov;, v,exp(Vvy),

V1 = V12

Summary: Backward AD

® Construct backward graph in a symbolic way (instead of concrete
values)

®* This graph can be reused by ditferent input values

Backpropagation vs. Reverse-mode AD

® Run backward through the forward graph ® Construct backward graph

* Caffe/cuda-convnet * Used by TensorFlow, PyTorch

Incomplete yete

* What is the missing from the following graph for ML fraininge

e
I
(o=
X

Recall Our Master Equation
plt+1) — f(g(t)’ V: (9(?5)’ D(t)))
L = MSE(ws - ReLU(w1z), y) 6 = {wi,ws}, D = {(z,y)}
f(0,Vy) =60—-Vp

Forward

Put In Practice
p(t+1) — f(g(t)’ V: (9(?3)’ D(t)))
L = MSE(ws - ReLU(w1z), y) 6 = {w1, w2}, D = {(z,9)}
f(0,Vy) =60—-Vp

| Operator/ its output tensor —— Data flowing direction

Forward

[wl 1 [w2 } [SZ] [wl 1 w2 wl w2
mat"mul }—{ relu H mat'mul @ ma’émul H relu mat}nul matmul [relu mat"mul MéE
[relu’ }——[matmul Mé relu -{matmul MéE’ }*’

}%
mat"mul J ma’émul mat}nul J’/ mat"mul
! :
sub [sub

Homework: How to derive gradients for

® Softmax cross entropy:

Xi

L =-t;log(y;),y; = softmax(x); = Y e¥d

Today

* Autodiff

* Architecture Overview

MLSys’ Grand problem

* Our system goals:
e . et

@9 * Scale

| * Memory-efficient

* Run on diverse hardware

* Energy-efficient

Easy to program/debug/deploy

ML System Overview

-

SGD Trainer

N T

. :
Logit Layer =)
)

bl
-
— |
=1

Dataflow Graph

Autodiff

Dataflow Graph

Autodiff

Graph Optimization

* Goal:
®* Rewrite the original Graph G to G

® G’ runs faster than G

Dataflow Graph

Autodiff

Motivating Example: Attention

attention
head
X = "that" =
— © QN q = XQ .
> A — W et # Original
O weights Q = matmul(W_q, h)
*
X) B *) ? — K = matmul(W_k, h)
Ol K = XK . V = matmul(W_v, h)
girl > vl W > —_— &
run C.) —»
= Context = # Me FQEd OKV
T
X — q K v QKV = matmul(concat(W_qg, W_k, W_v), h)
va V = XV 2Q, * XK7T
Lo - > W softma:t:(_ - w)*XVw
- 100
©
| | |
300 wide 100 wide

* Why merged QKV is faster?

Arithmetic Intensity

Al = Hops / #bytes

Dataflow Graph

Autodiff

How to perform graph optimizatione

* Writing rules / tfemplate

* Auto discovery

Dataflow Graph

Autodiff

Parallelization

* Goal: parallelize the graph compute over mulfiple devices

How fo partition the computational graph
on the device clustere

Fast connections
[wl W2 - Slow connections
mat"mul relu matvmul MéE “ node node
: : Ter) Tor) o) Por)) opy) fone])
[relu matmul MSE }**
mafhul} mafhul}
node node
" e pEEE EE=EE

Dataflow Graph

Autodiff

Parallelization Problems

* How fo partition

* How to communicate
®* How fo schedule

® Consistency

* How to auto-parallelize¢

Runtime and Scheduling

* Goal: schedule the compute/communication/memory in a way
that
®* As fast as possible
* Overlap communication with compute

® Subject to memory constraints

Operator Implementation

* Goal: get the tastest possible implementation of
* Matmul
* Conv2de
* For different hardware: V100, A100, H100, phone, TPU
® For different precision: fp32, fp 16, P8, fp4
* For different shape: conv2d_3x3, conv2d_5&x5, matmul2D, 3D,

attention

High-level Picture

Data Model Compute

(tl tmul) ?Mc:ke them run on (clusters
{xi}ni=1 HastieAiasin of) different kinds of
hardware

Math primitives

A repr that expresses the
computation using primitives

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Logistics
	Slide 3: Logistics
	Slide 4: High-level Picture
	Slide 5: Symbolic vs. Imperative (2016)
	Slide 6: Symbolic vs. Imperative (2024)
	Slide 7: Symbolic vs. Imperative (2024)
	Slide 8: Just-in-time (JIT) Compilation
	Slide 9: What happens behind the scene
	Slide 10
	Slide 11: Static Models vs. Dynamic Models
	Slide 12: High-level Picture
	Slide 13: What happens behind the Scene (Cond.)
	Slide 14: Expand it a Bit
	Slide 15: Recap: how to take derivative?
	Slide 16: Instead, Symbolic Differentiation
	Slide 17: Map autodiff rules to computational graph
	Slide 20: Reverse Mode AD
	Slide 21: Case Study
	Slide 22: Summary: Backward Mode Autodiff
	Slide 23: Back to Our Question
	Slide 24: Back to our question: Construct the Backward Graph
	Slide 25: How to implement reverse Autodiff (aka. BP)
	Slide 26: Start from v sub 4
	Slide 27: v sub 4: Inspect (v sub 2,, v sub 4) and (v sub 3,, v sub 4)
	Slide 28: Inspect v sub 3
	Slide 29: Inspect v sub 2
	Slide 30: Inspect (v sub 1,, v sub 2)
	Slide 31: Summary: Backward AD
	Slide 32: Backpropagation vs. Reverse-mode AD
	Slide 33: Incomplete yet?
	Slide 34: Recall Our Master Equation
	Slide 35: Put in Practice
	Slide 36: Homework: How to derive gradients for
	Slide 37: Today
	Slide 38: MLSys’ Grand problem
	Slide 39: ML System Overview
	Slide 40: Graph Optimization
	Slide 41: Motivating Example: Attention
	Slide 42: Arithmetic Intensity
	Slide 43: How to perform graph optimization?
	Slide 44: Parallelization
	Slide 45: Parallelization Problems
	Slide 46: Runtime and Scheduling
	Slide 47: Operator Implementation
	Slide 48: High-level Picture

